精英家教网 > 高中数学 > 题目详情

【题目】针对“中学生追星问题”,某校团委对“学生性别和中学生追星是否有关”作了一次调查,其中女生人数是男生人数的,男生追星的人数占男生人数的,女生追星的人数占女生人数的.若有的把握认为是否追星和性别有关,则男生至少有( )

参考数据及公式如下:

A. 12B. 11C. 10D. 18

【答案】A

【解析】

设男生人数为,依题意可得列联表;根据表格中的数据,代入求观测值的公式,求出观测值同临界值进行比较,列不等式即可得出结论.

设男生人数为,依题意可得列联表如下:

喜欢追星

不喜欢追星

总计

男生

女生

总计

若在犯错误的概率不超过的前提下认为是否喜欢追星和性别有关,

,解得

为整数,

若在犯错误的概率不超过的前提下认为是否喜欢追星和性别有关,

则男生至少有人,故选A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】我国古代数学家祖暅提出原理:“幂势既同,则积不容异”.其中“幂”是截面积,“势”是几何体的高.该原理的意思是:夹在两个平行平面间的两个几何体,被任一平行于这两个平行平面的平面所截,若所截的两个截面的面积恒相等,则这两个几何体的体积相等.如图,在空间直角坐标系中的平面内,若函数的图象与轴围成一个封闭的区域,将区域沿轴的正方向平移8个单位长度,得到几何体如图一,现有一个与之等高的圆柱如图二,其底面积与区域的面积相等,则此圆柱的体积为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形ABCD中,F分别在线段BCAD上,,将矩形ABEF沿EF折起记折起后的矩形为MNEF,且平面平面ECDF

求证:平面MFD

,求证:

求四面体NFEC体积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆分别为其左、右焦点,过的直线与此椭圆相交于两点,且的周长为8,椭圆的离心率为

(Ⅰ)求椭圆的方程;

(Ⅱ)在平面直角坐标系中,已知点与点,过的动直线(不与轴平行)与椭圆相交于两点,点是点关于轴的对称点.求证:

i三点共线.

ii

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆经过定点,且与直线相切,设动圆圆心的轨迹为曲线.

(1)求曲线的方程;

(2)设过点的直线分别与曲线交于两点,直线的斜率存在,且倾斜角互补,证明:直线的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知斜率为1的直线与椭圆交于两点,且线段的中点为,椭圆的上顶点为.

(1)求椭圆的离心率;

(2)设直线与椭圆交于两点,若直线的斜率之和为2,证明:过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,三棱锥放置在以为直径的半圆面上,为圆心,为圆弧上的一点,为线段上的一点,且.

(Ⅰ)求证:平面平面

(Ⅱ)当二面角的平面角为时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四面体中,分别是线段的中点,,直线与平面所成的角等于

(Ⅰ)证明:平面平面

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市为鼓励人们绿色出行,乘坐地铁,地铁公司决定按照乘客经过地铁站的数量实施分段优惠政策,不超过站的地铁票价如下表:现有甲、乙两位乘客同时从起点乘坐同一辆地铁,已知他们乘坐地铁都不超过站,且他们各自在每个站下车的可能性是相同的.

(1)若甲、乙两人共付费元,则甲、乙下车方案共有多少种?

(2)若甲、乙两人共付费元,求甲比乙先到达目的地的概率.

查看答案和解析>>

同步练习册答案