精英家教网 > 高中数学 > 题目详情

【题目】某公司的生产部门调研发现,该公司第二、三季度的月用电量与月份线性相关,且数据统计如下表:

但核对电费报表时发现一组数据统计有误.

(1)请指出哪组数据有误,并说明理由;

(2)在排除有误数据后,求月用电量与月份之间的回归方程,并预测统计有误月份的用电量.(结果精确到0.1)

附注:,

【答案】(1)见解析;(2)36.2

【解析】

(1散点图如图所示,因为供水量与月份线性相关,点(7,55)离其它点所在区域较远,故(7,55)有误;

(2)求出=6.4,=30.2,可得b,a,可得用电量与月份之间的回归直线方程=x+,x=7时,即可预测统计有误那个月份的用电量.

(1)作散点图如图所示.因为用电量与月份之间线性相关,所以散点图的样本点分布在回归直线附近比较窄的带状区域内,而点(7,55)离其他点所在区域较远,故(7,55)这组数据有误.

(2)排除(7,55)这一组有误数据后,计算得=6.4,=30.2.

因为b=≈9.98, a=30.2﹣9.98×6.4=﹣33.67,,

∴y=9.98x﹣33.67,

x=7时,y=9.98×7﹣33.67=36.2

即7月份的用电量大约为36.2千瓦时.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】AB两个投资项目的利润率分别为随机变量X1X2,根据市场分析,X1X2的分布列分别为

X1

5%

10%

P

0.8

0.2

X2

2%

8%

12%

P

0.2

0.5

0.3

(1)AB两个项目上各投资100万元,Y1Y2分别表示投资项目AB所获得的利润,求方差V(Y1)V(Y2)

(2)x(0≤x≤100)万元投资A项目,100x万元投资B项目,f(x)表示投资A项目所得利润的方差与投资B项目所得利润的方差的和.求f(x)的最小值,并指出x为何值时,f(x)取到最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为曲线上两点,的横坐标之和为

(1)求直线的斜率;

(2)为曲线上一点,处的切线与直线平行,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列语句中是命题的有________,其中是真命题的有_____(填序号).

①“垂直于同一条直线的两个平面必平行吗?”②“一个数不是正数就是负数”;③“在一个三角形中,大角所对的边大于小角所对的边”;④“x+y为有理数,x,y都是有理数”;⑤作一个三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣ax+b(a>0,b>0)有两个不同的零点m,n,且m,n和﹣2三个数适当排序后,即可成为等差数列,也可成为等比数列,则a+b的值为(
A.7
B.8
C.9
D.10

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假设每天从甲地去乙地的旅客人数X是服从正态分布N(800,502)的随机变量,若一天中从甲地去乙地的旅客人数不超过900的概率为p0,p0的值为 ( )

A. 0.954 4 B. 0.682 6 C. 0.997 4 D. 0.977 2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某企业生产的某种产品中抽取500,测量这些产品的一项质量指标值,由测量结果得如图所示的频率分布直方图.

(1)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中的数据用该组区间的中点值作代表).

(2)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.

利用该正态分布,P(187.8<Z<212.2);

某用户从该企业购买了100件这种产品,X表示这100件产品中质量指标值位于区间(187.8,212.2)上的产品件数,利用的结果,E(X).

:≈12.2.

Z~N(μ,σ2),P(μ-σ<Z<μ+σ)=0.682 6,P(μ-2σ<Z<μ+2σ)=0.954 4.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=lnx﹣ ax2﹣2x,其中a≤0.
(1)若曲线y=f(x)在点(1,f(1))处的切线方程为y=2x+b,求a﹣2b的值;
(2)讨论函数f(x)的单调性;
(3)设函数g(x)=x2﹣3x+3,如果对于任意的x,t∈(0,1],都有f(x)≤g(t)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)的导函数y=f'(x)的图像如图所示.

则下列说法中正确的是____(填序号).

函数y=f(x)在区间上单调递增;

函数y=f(x)在区间上单调递减;

函数y=f(x)在区间(4,5)上单调递增;

x=2,函数y=f(x)有极小值;

x=-,函数y=f(x)有极大值.

查看答案和解析>>

同步练习册答案