精英家教网 > 高中数学 > 题目详情

【题目】已知圆的圆心在直线上,圆轴截得弦长为4,且过点.

1)求圆的方程;

2)若点为直线上的动点,由点向圆作切线,求切线长的最小值.

【答案】122

【解析】

1)设出的标准方程,根据圆的圆心在直线上,可得圆心坐标之间的关系,再由圆轴截得弦长为4,又得到一个等式,再把点代入圆的标准方程中,这样解方程组进行求解即可;

2)因为点向圆作切线,要使得切线长最小,只需最小,只有当时,切线长最小,结合点到直线距离公式和勾股定理进行求解即可.

解:(1)设圆的标准方程为

因为圆的圆心在直线上,

所以

因为圆轴截得弦长为4

所以

因为圆过点

所以

解得:

故圆的方程为.

2)因为点向圆作切线,要使得切线长最小,只需最小,

所以当时,切线长最小,

此时

故切线长为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线l的方程为yx2,又直线l过椭圆Cab0)的右焦点,且椭圆的离心率为

)求椭圆C的方程;

)过点D01)的直线与椭圆C交于点AB,求△AOB的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四面体ABCD中,O、E分别是BD、BC的中点,.

(1)求证:平面BCD;

(2)求异面直线AB与CD所成角的余弦值;

(3)求点E到平面ACD的距离。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中:底面ABCD,底面ABCD为梯形,,且,BC=1,M为棱PD上的点。

(Ⅰ)若,求证:平面PAB;

(Ⅱ)求直线BD与平面PAD所成角的大小;

(Ⅲ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为增强市民的环境保护意识,某市面向全市学校征召100名教师做义务宣传志愿者,成立环境保护宣传组,现把该组的成员按年龄分成5组,如下表所示:

组别

年龄

人数

1

5

2

35

3

20

4

30

5

10

(Ⅰ)若从第3,4,5组中用分层抽样的方法选出6名志愿者参加某社区宣传活动,应从第3,4,5组各选出多少名志愿者?

(Ⅱ)在Ⅰ的条件下,宣传组决定在这6名志愿者中随机选2名志愿者介绍宣传经验.

(ⅰ)列出所有可能结果;

(ⅱ)求第4组至少有1名志愿者被选中的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“割圆术”是刘徽最突出的数学成就之一,他在《九章算术注》中提出割圆术,并作为计算圆的周长,面积已经圆周率的基础,刘徽把圆内接正多边形的面积一直算到了正3072边形,并由此而求得了圆周率为3.1415和3.1416这两个近似数值,这个结果是当时世界上圆周率计算的最精确数据.如图,当分割到圆内接正六边形时,某同学利用计算机随机模拟法向圆内随机投掷点,计算得出该点落在正六边形内的频率为0.8269,那么通过该实验计算出来的圆周率近似值为(参考数据:

A. 3.1419B. 3.1417C. 3.1415D. 3.1413

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“微信运动”已经成为当下最热门的健身方式,小李的微信朋友圈内也有大量的好友参加了“微信运动”.他随机的选取了其中30人,记录了他们某一天走路的步数,将数据整理如下:

步数

人数

5

13

12

(1)若采用样本估计总体的方式,试估计小李所有微信好友中每日走路步数超过5000步的概率;

(2)已知某人一天的走路步数若超过8000步则他被系统评定为“积极型”,否则评定为“懈怠型”,将这30人按照“积极型”、“懈怠型”分成两层,进行分层抽样,从中抽取5人,将这5人中属于“积极型”的人依次记为,属于“懈怠型”的人依次记为,现再从这5人中随机抽取2人接受问卷调查.设为事件“抽取的2人来自不同的类型”,求事件发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从甲、乙、丙、丁、戊五名志愿者中选派三人分别从事翻译、导游、礼仪三项不同工作,若其中乙和丙只能从事前两项工作,其余三人均能从事这三项工作,则不同的选派方案共有( )

A.36B.12C.18D.24

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行下面的程序框图,如果输入的,则输出的( )

A. B. C. D.

查看答案和解析>>

同步练习册答案