精英家教网 > 高中数学 > 题目详情

【题目】如图,在平面直角坐标系xOy中,椭圆C (ab0)的离心率为且过点(1 )过椭圆C的左顶点A作直线交椭圆C于另一点P,交直线lxm(ma)于点M.已知点B(1,0),直线PBl于点N

(Ⅰ)求椭圆C的方程;

(Ⅱ)若MB是线段PN的垂直平分线,求实数m的值.

【答案】1y212m

【解析】试题分析:(1)根据题意列出关于的方程组,结合性质 ,求出,即可得结果;(2)设,则,所以.可得直线的方程为,根据可得,解方程即可得结果.

试题解析:解:1因为椭圆C的离心率为,所以a24b2 又因为椭圆C过点(1 ),所以 解得a24b21

所以椭圆C的方程为y21

(2)解法1

P(x0y0),-2x02 x0≠1,则y021

因为MBPN的垂直平分线,所以P关于B的对称点N(2-x0,-y0),

所以2x0m

A(20)P(x0y0),可得直线AP的方程为y (x2)

xm,得y,即M(m )

因为PBMB,所以kPB·kMB=-1,

所以kPB·kMB =-1

因为y021所以1

因为x0=2-m所以化简得3m2-10m+4=0,

解得m

因为m2,所以m

解法2

①当AP的斜率不存在或为0时,不满足条件.

AP斜率为k,则APyk(x+2),

联立消去y(4k21)x216k2x16k240

因为xA-2,所以xP所以yP

所以P( )

因为PN的中点为B,所以m2 (*)

因为AP交直线l于点M,所以M(mk(m+2)),

因为直线PBx轴不垂直,所以≠1,即k2

所以kPBkMB

因为PBMB,所以kPB·kMB=-1,

所以·=-1.(**

将(*)代入(**),化简得48k4-32k2+1=0,

解得k2,所以m

又因为m2所以m

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】我市为了解本市高中学生的汉字书写水平,在全市范围内随机抽取了近千名学生参加汉字听写考试,将所得数据进行分组,分组区间为:[50,60),[60,70),[70,80),[80,90),[90,100]并绘制出频率分布直方图,如图所示.
(1)求频率分布直方图中的a值,及该市学生汉字听写考试的平均分;
(2)设A,B,C三名学生的考试成绩在区间[80,90)内,M,N两名学生的考试成绩在区间[60,70)内,现从这5名学生中任选两人参加座谈会,求学生M,N中至少有一人被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点为圆上一动点,轴于点,若动点满足(其中为非零常数)

(1)求动点的轨迹方程;

(2)当时,得到动点的轨迹为曲线,斜率为1的直线与曲线相交于两点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cosx+ax2﹣1,a∈R.
(1)当a=0时,求函数f(x)在 处的切线方程;
(2)当a=1时,求函数f(x)在[﹣π,π]上的最大值和最小值;
(3)若对于任意的实数x恒有f(x)≥0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的三个内角A,B,C所对的边分别为a,b,c,向量 =(c+a,b), =(c﹣a,b﹣c),且
(1)求角A的大小;
(2)若a=3,求△ABC周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a、b表示两条直线,α、β表示两个平面,则下列命题正确的是 . (填写所有正确命题的序号) ①若a∥b,a∥α,则b∥α;②若a∥b,aα,b⊥β,则α⊥β;
③若α∥β,a⊥α,则a⊥β;④若α⊥β,a⊥b,a⊥α,则b⊥β.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 ,其中 ,k∈R.
(1)当k为何值时,有
(2)若向量 的夹角为钝角,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果不等式ax2+bx+c>0的解集为{x|﹣2<x<4},那么对于函数f(x)=ax2+bx+c应有(
A.f(5)<f(2)<f(﹣1)
B.f(﹣1)<f(5)<f(2)
C.f(2)<f(﹣1)<f(5)
D.f(5)<f(﹣1)<f(2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某品牌汽车4s店对最近100位采用分期付款的购车者进行统计,统计结果如表所示:

付款方式

分1期

分2期

分3期

分4期

分5期

频数

40

20

a

10

b

已知分3期付款的频率为0.2,4s店经销一辆该品牌的汽车,顾客分1期付款,其利润为1万元,分2期或3期付款其利润为1.5万元,分4期或5期付款,其利润为2万元,用Y表示经销一辆汽车的利润.

1求上表中ab的值.

2若以频率作为概率,求事件A购买该品牌汽车的3位顾客中,至多有一位采用3期付款的概率PA

3Y的分布列及数学期望EY.

查看答案和解析>>

同步练习册答案