精英家教网 > 高中数学 > 题目详情
19.设函数f(x)=|x2-4x-5|.
(Ⅰ)作出函数f(x)的图象;
(Ⅱ)设集合A={x|f(x)≥5},B=(-∞,-2]∪[0,4]∪[6,+∞).试判断集合A和B之间的关系,并给出证明.

分析 (Ⅰ)结合二次函数的图象和函数图象的纵向对折变换,可得函数f(x)的图象;
(Ⅱ)令f(x)=5,求出方程的根,进而结合(Ⅰ)中图象可得集合A,由集合包含关系的定义,可得A,B之间的关系.

解答 解:(Ⅰ)函数f(x)=|x2-4x-5|的图象如下图所示:

(Ⅱ)B?A理由如下:
令f(x)=5,则x2-4x-5=5或x2-4x-5=-5,
解得:x=2-$\sqrt{14}$,或x=2+$\sqrt{14}$,或x=0,或x=4,
结合(Ⅰ)中图象可得集合A={x|f(x)≥5}=(-∞,2-$\sqrt{14}$]∪[0,4]∪[2+$\sqrt{14}$,+∞).
∵2-$\sqrt{14}$>-2,2+$\sqrt{14}$<6,
故B?A.

点评 本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ax2+a+4(a≠0).
(1)若方程f(x)=0的两个根一个根比1大,一个根比1小,求实数a的取值范围;
(2)在(1)的条件下,若a∈Z,试求方程f(x)=0的 两个根.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知An={x|2n<x<2n+1,x=3m,m∈N+},若|An|表示集合An中元素的个数则|A1|+|A2|+|A3|+…+|A10|=682.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.奇函数f(x)对任意x∈R都有f(x+2)=f(-x)成立,且f(1)=6,则f(2014)+f(2015)+f(2016)的值为(  )
A.-6B.0C.6D.12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知P(-1,1)为曲线上的一点,PQ为曲线的割线,若kPQ当△x→0时的极限为-2,则在点P处的切线的方程为2x+y+1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)对任意实数x,y,均有f(x+y)=f(x)+f(y)+1,若f(1)=2,则f(4)=(  )
A.5B.7C.9D.11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知f(x)=$\left\{{\begin{array}{l}{|{x-1}|-2}&{({|x|≤1})}\\{-\frac{{{x^2}+2}}{{1+{x^2}}}}&{({|x|>1})}\end{array}}$,若f(a)=-$\frac{6}{5}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知集合A={x|x2-2x-3≤0},B={x|m-2≤x≤m+2,m∈R}.
(1)若A∩B=[0,3],求实数m的值;
(2)若A⊆∁RB,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f(x)是定义在R上的偶函数,且x≤0时,f(x)=1-x.
(1)求f(0),f(1)的值;
(2)求f(x)的解析式.

查看答案和解析>>

同步练习册答案