【题目】如图,三棱锥D-ABC中,,E,F分别为DB,AB的中点,且.
(1)求证:平面平面ABC;
(2)求点D到平面CEF的距离.
【答案】(1)证明见解析;(2).
【解析】
(1)取BC的中点G,连接AG,DG,可证平面DAG,可得,再由,,可证,可得平面ABC,即可证明结论;
(2)由条件可得点D到平面CEF的距离等于点B到平面CEF的距离,求出三棱锥的体积和的面积,用等体积法,即可求解.
(1)如图,取BC的中点G,连接AG,DG,
因为,所以,
因为,所以,
又因为,
所以平面DAG,所以.
因为E,F分别为DB,AB的中点,所以.
因为,即,则.
又因为,所以平面ABC,
又因为平面DAB,所以平面平面ABC.
(2)因为点E为DB的中点,
所以点D到平面CEF的距离等于点B到平面CEF的距离.
设点D到平面CEF的距离为h,
因为,又因为平面ABC,
所以,
在中,.
所以,
在中,,
所以,
又因为,
所以,
而,
则.
所以点D到平面CEF的距离为.
科目:高中数学 来源: 题型:
【题目】如下图中、、、、、六个区域进行染色,每个区域只染一种颜色,每个区域只染一种颜色,且相邻的区域不同色.若有种颜色可供选择,则共有_________种不同的染色方案.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某保险公司的某险种的基本保费为(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:
上年度出险次数 | 0 | 1 | 2 | 3 | |
保费(元) |
随机调查了该险种的400名续保人在一年内的出险情况,得到下表:
出险次数 | 0 | 1 | 2 | 3 | |
频数 | 280 | 80 | 24 | 12 | 4 |
该保险公司这种保险的赔付规定如下:
出险序次 | 第1次 | 第2次 | 第3次 | 第4次 | 第5次及以上 |
赔付金额(元) | 0 |
将所抽样本的频率视为概率.
(Ⅰ)求本年度续保人保费的平均值的估计值;
(Ⅱ)按保险合同规定,若续保人在本年度内出险3次,则可获得赔付元;若续保人在本年度内出险6次,则可获得赔付元;依此类推,求本年度续保人所获赔付金额的平均值的估计值;
(Ⅲ)续保人原定约了保险公司的销售人员在上午10:30~11:30之间上门签合同,因为续保人临时有事,外出的时间在上午10:45~11:05之间,请问续保人在离开前见到销售人员的概率是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程(为参数).直线的参数方程(为参数).
(Ⅰ)求曲线在直角坐标系中的普通方程;
(Ⅱ)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,当曲线截直线所得线段的中点极坐标为时,求直线的倾斜角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有一矩形硬纸板材料(厚度忽略不计),一边长为6分米,另一边足够长.现从中截取矩形(如图甲所示),再剪去图中阴影部分,用剩下的部分恰好能折卷成一个底面是弓形的柱体包装盒(如图乙所示,重叠部分忽略不计),其中是以为圆心、的扇形,且弧,分别与边, 相切于点, .
(1)当长为1分米时,求折卷成的包装盒的容积;
(2)当的长是多少分米时,折卷成的包装盒的容积最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四个命题:①任意两条直线都可以确定一个平面;②若两个平面有3个不同的公共点,则这两个平面重合;③直线a,b,c,若a与b共面,b与c共面,则a与c共面;④若直线l上有一点在平面α外,则l在平面α外.其中错误命题的个数是( )
A.1B.2C.3D.4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com