精英家教网 > 高中数学 > 题目详情
8.设f(x)=$\frac{1}{3}$x3+3x2+ax,若g(x)=$\frac{1}{{4}^{x}}$,对任意x1∈[$\frac{1}{2}$,1],存在x2∈[$\frac{1}{2}$,2],使得f′(x1)≤g(x2)成立,则实数a的取值范围为(  )
A.[-$\frac{11}{4}$,+∞)B.(-∞,-$\frac{13}{2}$]C.(-∞,-$\frac{11}{4}$]D.[-$\frac{13}{2}$,+∞)

分析 由题意,只要f'(x)max≤g(x)max,分别求出两个函数的最大值,转化为关于a 的不等式求a的范围.

解答 解:由题意,对任意x1∈[$\frac{1}{2}$,1],存在x2∈[$\frac{1}{2}$,2],
使得f'(x1)≤g(x2)成立,
所以f'(x)max≤g(x)max,f'(x)=x2+6x+a=(x+3)2+a-9,在[$\frac{1}{2}$,1]单调递增,
∴f'(x)max=f'(1)=7+a,g(x)在[$\frac{1}{2}$,2]单调递减,
则g(x)max=g($\frac{1}{2}$)=$\frac{1}{2}$,所以7+a$≤\frac{1}{2}$,则a$≤\frac{1}{2}-7=-\frac{13}{2}$;
所以实数a的取值范围为(-$∞,-\frac{13}{2}$);
故选B.

点评 本题考查了三次函数和指数函数的单调性以及存在与任意问题的解决办法;属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.几何体的三视图如图所示(单位:cm),则该几何体的体积为$3\sqrt{3}$cm3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.定义:分子为1且分母为正整数的分数为单位分数,我们可以把1拆为若干个不同的单位分数之和.如:1=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{6}$,1=$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+$\frac{1}{12}$,1=$\frac{1}{2}$+$\frac{1}{5}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{20}$,以此类推,可得:1=$\frac{1}{2}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{a}$+$\frac{1}{b}$+$\frac{1}{30}$+$\frac{1}{42}$+$\frac{1}{56}$+$\frac{1}{72}$+$\frac{1}{90}$+$\frac{1}{110}$+$\frac{1}{132}$+$\frac{1}{156}$,其中a<b,a,b∈N*,设1≤x≤a,1≤y≤b,则$\frac{x+y+4}{x+2}$的最小值为(  )
A.$\frac{25}{3}$B.$\frac{23}{7}$C.$\frac{8}{7}$D.$\frac{6}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某校高三共有男生400名,从所有高三男生中随机抽取20名男生测量身高(单位:cm)作为样本,得到频率分布表与频率分布直方图1(部分)如表:
 分组频数 频率 
[150,160)1 
[160,170) n1 f1
[170,180)  n2 f2 
[180,190)5
[190,200]3 

(Ⅰ)求n1、n2、f1、f2
(Ⅱ)试估计身高不低于180cm的该校高三男生人数,并说明理由;
(Ⅲ)从样本中不低于180cm的男生身高,绘制成茎叶图(图2);
现从身高不低于185cm的男生中任取3名参加选拔性测试,求至少有两位身高不低于190cm的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在长方形ABCD中,AB=2,AD=1,E为DC的中点,将△DAE沿AE折起,平面DAE⊥平面ABCE,连DB,DC,BE.

(Ⅰ)求证:BE⊥平面ADE;
(Ⅱ)求AC与平面ADE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=|x-a|.
(1)当a=2时,解不等式f(x)≥4-|x-1|;
(2)若f(x)≤1的解集为[0,2],$\frac{1}{m}$+$\frac{1}{2n}$=a(m>0,n>0),求:m+2n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=cosx(sinx+cosx)-$\frac{1}{2}$.
(1)若0<α<$\frac{π}{2}$,且sinα=$\frac{\sqrt{2}}{2}$,求f(α)的值;
(2)求函数f(x)的最小正周期及单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知定义在实数集R上的偶函数f(x)在区间[0,+∞)上是单调减函数,若f(1)<f(lgx),则x的取值范围为$\frac{1}{10}$<x<10.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.A,B,C,D,E等5名同学坐成一排照相,要求学生A,B不能同时坐在两旁,也不能相邻而坐,则这5名同学坐成一排的不同坐法共有60种.(用数学作答)

查看答案和解析>>

同步练习册答案