精英家教网 > 高中数学 > 题目详情
16.定义对于任意两个集合M、N的运算:M?N={x|x∈M,x∈N,x∉M∩N}.设集合A={x|x2-3x+2=0},B={y|y=x2-2x+3,x∈A},则A?B={1,3}.

分析 新定义运算:M?N={x|x∈M∪N,且x∉M∩N},是由仅属于M或N的元素组成的集合,求出即可.

解答 解:∵A={x|x2-3x+2=0}={1,2},
B={y|y=x2-2x+3,x∈A}={2,3},
∴A∪B={1,2,3},A∩B={2}
∴A?B={1,3}.
故答案为:{1,3}.

点评 本题考查了新定义题目的应用问题,解题的关键是读懂新定义的内容,把问题转化为学过的知识解答,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.定义在R上的函数f(x)满足f(0)=0,f(x)+f(1-x)=1,f($\frac{x}{5}$)=$\frac{1}{2}f(x)$,且当0≤x1≤x2≤1时,f(x1)≤f(x2),则f($\frac{1}{2015}$)等于(  )
A.$\frac{1}{2}$B.$\frac{1}{16}$C.$\frac{1}{32}$D.$\frac{1}{64}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设数列{an}满足a1+3a2+32a3+…+3n-1an=$\frac{n}{3}$,a∈N*.bn=$\frac{n}{{a}_{n}}$,求:
(1)数列{an}的通项公式an
(2)数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知△ABC为锐角三角形,且三个内角为A,B,C,$\overrightarrow{p}$=(cosA+sinA,2+2sinA),$\overrightarrow{q}$=(cosA-sinA,1-sinA),且$\overrightarrow{p}$⊥$\overrightarrow{q}$
(1)求A;
(2)设AC=2,sin2A+cos2B+sin2C-sinAsinC=1,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知二次函数f(x)满足f(0)=0,且f(x+1)-f(x)=2x-1(x∈R).
(1)求函数f(x)的解析式;
(2)若m>0,函数f(x)在[m,m+2]上的最小值为3,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知二次函数y=f(x)满足条件f(0)=$\frac{1}{2}$m和f(x+1)-f(x-1)=4x-2m
(1)求f(x)的解析式;
(2)当y=f(x)的图象与x轴有两个交点时,这两个交点是否可能在点($\frac{1}{2}$,0)的两侧.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知f(x)是定义在R上的奇函数,当x<0时,f(x)=x2+2x,则函数$g(x)=f(x)+\frac{1}{2}x-1$零点的集合为(  )
A.{1,-1,0}B.{-2,2,0}C.$\{2,-\frac{1}{2},\frac{{-5+\sqrt{41}}}{4}\}$D.$\{2,\frac{1}{2},\frac{{-5-\sqrt{41}}}{4}\}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.执行如图所示的程序框图,则输出s的值为(  )
A.$\frac{25}{24}$B.$\frac{11}{12}$C.$\frac{5}{6}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数 f(x)=4x2-4ax+(a2-2a+2).
(1)若a=1,求f(x)在闭区间[0,2]上的值域;
(2)若f(x)在闭区间[0,2]上有最小值3,求实数a的值.

查看答案和解析>>

同步练习册答案