【题目】在某亲子游戏结束时有一项抽奖活动,抽奖规则是:盒子里面共有4个小球,小球上分别写有0,1,2,3的数字,小球除数字外其他完全相同,每对亲子中,家长先从盒子中取出一个小球,记下数字后将小球放回,孩子再从盒子中取出一个小球,记下小球上数字将小球放回.抽奖活动的奖励规则是:①若取出的两个小球上数字之积大于4,则奖励飞机玩具一个;②若取出的两个小球上数字之积在区间上,则奖励汽车玩具一个;③若取出的两个小球上数字之积小于1,则奖励饮料一瓶.
(1)求每对亲子获得飞机玩具的概率;
(2)试比较每对亲子获得汽车玩具与获得饮料的概率,哪个更大?请说明理由.
【答案】(1);(2)获得饮料的概率更大.
【解析】
(1)利用列举法求出基本事件总数有16个,记“获得飞机玩具”为事件,则事件包含的基本事件有3个,由此能求出每对亲子获得飞机玩具的概率.
(2)记“获得汽车玩具”为事件,“获得饮料”为事件,利用列举法求出事件包含的基本事件有6个,由此能求出每对亲子获得汽车玩具的概率,再由对立事件概率计算公式得每对亲子获得饮料的概率,由此能求出每对亲子获得汽车玩具小于获得饮料的概率.
解:(1)基本事件总数有16个,分别为:
,,,,,,,,
,,,,,,,,
记“获得飞机玩具”为事件,则事件包含的基本事件有3个,分别为:,,,
∴每对亲子获得飞机玩具的概率.
(2)记“获得汽车玩具”为事件,“获得饮料”为事件,
事件包含的基本事件有6个,分别为:
,,,,,,
∴每对亲子获得汽车玩具的概率,
每对亲子获得饮料的概率,
∴每对亲子获得汽车玩具小于获得饮料的概率.
科目:高中数学 来源: 题型:
【题目】设a为正实数.如图,一个水轮的半径为a m,水轮圆心 O 距离水面,已知水轮每分钟逆时针转动 5 圈.当水轮上的点 P 从水中浮现时(即图中点)开始计算时间.
(1)将点 P 距离水面的高度 h(m )表示为时间 t(s)的函数;
(2)点 P 第一次达到最高点需要多少时间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着我国中医学的发展,药用昆虫的使用相应愈来愈多.每年春暖以后至寒冬前,是昆虫大量活动与繁殖季节,易于采集各种药用昆虫.已知一只药用昆虫的产卵数与一定范围内的温度有关,于是科研人员在3月份的31天中随机挑选了5天进行研究,现收集了该种药用昆虫的5组观测数据如下表:
日期 | 2日 | 7日 | 15日 | 22日 | 30日 |
温度 | 10 | 11 | 13 | 12 | 8 |
产卵数/个 | 23 | 25 | 30 | 26 | 16 |
(1)从这5天中任选2天,记这两天药用昆虫的产卵分别为,,求事件“,均不小于25”的概率;
(2)科研人员确定的研究方案是:先从这五组数据中任选2组,用剩下的3组数据建立关于的线性回归方程,再对被选取的2组数据进行检验.
(ⅰ)若选取的是3月2日与30日的两组数据,请根据3月7日、15日和22日这三天的数据,求出关于的线性回归方程;
(ⅱ)若由线性回归方程得到的估计数据与选出的检验数据的误差均不超过2个,则认为得到的线性回归方程是可靠的,试问(ⅰ)中所得的线性回归方程是否可靠?
附:回归直线的斜率和截距的最小二乘估计公式分别为,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量(cosx+sinx,1),(sinx,),函数.
(1)若f(θ)=3且θ∈(0,π),求θ;
(2)求函数f(x)的最小正周期T及单调递增区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某同学用“五点法”画函数在某一周期内的图象时,列表并填入了部分数据,如下表:
① | |||||
(1)请将上面表格中①的数据填写在答题卡相应位置上,并直接写出函数的解析式;
(2)若将函数的图象上所有点的横坐标变为原来的倍,纵坐标不变,得到函数的图象,求当时,函数的单调递增区间;
(3)若将函数图象上的所有点向右平移个单位长度,得到的图象. 若图象的一个对称中心为,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从5名男生和4名女生中选出4人去参加座谈会,问:
(1)如果4人中男生和女生各选2人,有多少种选法?
(2)如果男生中的甲与女生中的乙至少要有1人在内,有多少种选法?
(3)如果4人中必须既有男生又有女生,有多少种选法?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com