精英家教网 > 高中数学 > 题目详情
14.求数列81,891,8991,89991,…前n项和Sn

分析 通过变形可知通项an=9×(10n-1),利用分组求和法计算即得结论.

解答 解:依题意,an=8$\underset{\underbrace{99…9}}{(n-1)个9}$1=9×(10n-1),
于是Sn=9[(10+102+…+10n)-n]
=9[$\frac{10(1-1{0}^{n})}{1-10}$-n]
=10n+1-9n-10.

点评 本题考查数列的通项及前n项和,考查运算求解能力,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知a1=3,an+1=$\frac{6{a}_{n}}{3-4{{a}_{n}}^{2}}$,求an的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知一组数据1,1+d,1+2d,1+3d,1+4d,1+5d,1+6d,若这组数据的方差为1,则d=(  )
A.±$\frac{1}{4}$B.±$\frac{1}{2}$C.±$\frac{1}{28}$D.±$\frac{1}{36}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知等差数列{an}的前n项和为Sn,已知a5=9,S10=100.
(Ⅰ)求通项an
(Ⅱ)记数列{$\frac{{S}_{n}}{n}$}的前n项和为Tn,数列{$\frac{1}{{S}_{n+1}-{T}_{n+1}}$}的前n项和为Un,求证:Un<2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.f(x)是定义在非零实数上的增函数,且满足f($\frac{x}{y}$)=f(x)-f(y).
(1)求f(1)的值;
(2)证明:f(x)是偶函数;
(3)若f(6)=1,解不等式f(x+5)-f($\frac{1}{x}$)<2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设f(x)=$\frac{1}{x}$+alnx(a∈R).
(1)若a<0,且曲线y=f(x)在(1,f(1))处的切线与两坐标轴围成的面积为$\frac{9}{4}$,求实数a的值;
(2)若函数f(x)在[1,+∞)上单调递增,求实数a的取值范围;
(3)若不等式$\frac{1}{x}$+2lnx≥m2-2m+1在x∈[1,+∞)上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知点P,Q为圆C:x2+y2=25上的任意两点,且|PQ|<6,若PQ中点组成的区域为M,在圆C内任取一点,则该点落在区域M(2,-1)上的概率为(  )
A.$\frac{3}{5}$B.$\frac{9}{25}$C.$\frac{16}{25}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.不等式$\frac{{3{x^2}+2x+2}}{{{x^2}+x+1}}≥k$,对任意实数x都成立,满足条件自然数k最大值为a,若已知mn>0,m≠n,试比较log${\;}_{\frac{1}{a}}$(3m2+4mn+n2)与log${\;}_{\frac{1}{a}}$(2m2+6mn)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=x3-2x2+x+1,求:
(1)求在点(2,3)处的切线方程;
(2)求函数f(x)的单调区间与极值.

查看答案和解析>>

同步练习册答案