精英家教网 > 高中数学 > 题目详情

【题目】某公司为了准确地把握市场,做好产品生产计划,对过去四年的数据进行整理得到了第年与年销量(单位:万件)之间的关系如下表:

(1)在图中画出表中数据的散点图;

(2)根据散点图选择合适的回归模型拟合的关系(不必说明理由);

(3)建立关于的回归方程,预测第5年的销售量.

附注:参考公式:回归直线的斜率和截距的最小二乘法估计公式分别为:

.

【答案】(1)见解析;(2) .(3)第5年的销售量大约为71万件.

【解析】试题分析:

(1)利用所给的数据绘制散点图即可;

(2)点在直线附近,则利用直线拟合的关系

(3)利用题中的 数据求得,据此预测第5年的销售量为万件.

试题解析:(Ⅰ)作出散点图如图:

(Ⅱ)根据散点图观察,可以用线性回归模型拟合的关系.观察散点图可知各点大致分布在一条直线附近,列出表格:

可得

所以

的回归直线方程为

(Ⅲ)当时,

故第5年的销售量大约71万件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知△ABC的三个内角A,B,C所对的边分别为a,b,c. ,且
(Ⅰ)求A的大小;
(Ⅱ)若a=1, .求SABC

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某智能手机制作完成之后还需要依次通过三道严格的审核程序,第一道审核、第二道审核、第三道审核通过的概率分别为,每道程序是相互独立的,且一旦审核不通过就停止审核,每部手机只有三道程序都通过才能出厂销售.

(1)求审核过程中只通过两道程序的概率;

(2)现有3部该智能手机进入审核,记这3部手机可以出厂销售的部数为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市对创“市级示范性学校”的甲、乙两所学校进行复查验收,对办学的社会满意度一项评价随机访问了20为市民,这20位市民对这两所学校的评分(评分越高表明市民的评价越好)的数据如下:

甲校:58,66,71,58,67,72,82,92,83,86,67,59,86,72,78,59,68,69,73,81;

乙校:90,80,73,65,67,69,81,85,82,88,89,86,86,78,98,95,96,91,76,69,.

检查组将成绩分成了四个等级:成绩在区间的为等,在区间的为等,在区间的为等,在区间等.

(1)请用茎叶图表示上面的数据,并通过观察茎叶图,对两所学校办学的社会满意度进行比较,写出两个统计结论;

(2)根据所给数据,以事件发生的频率作为相应事件发生的概率,求乙校得分的等级高于甲校得分的等级的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线)与轴交于点,动圆与直线相切,并且与圆相外切,

1)求动圆的圆心的轨迹的方程;

2)若过原点且倾斜角为的直线与曲线交于两点,问是否存在以为直径的圆经过点?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是2017年第一季度五省情况图,则下列陈述正确的是( )

①2017年第一季度 总量和增速均居同一位的省只有1个;

②与去年同期相比,2017年第一季度五个省的总量均实现了增长;

③去年同期的总量前三位是江苏、山东、浙江;

④2016年同期浙江的总量也是第三位.

A. ①② B. ②③④ C. ②④ D. ①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆 两点,且圆心在直线.

1)求圆的方程;

2)若直线过点且被圆截得的线段长为,求的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,平面平面,侧面是边长为的等边三角形,底面是矩形,且,则该四棱锥外接球的表面积等于__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥,侧面是边长为4的等边三角形,底面为菱形,侧面与底面所成的二面角为.

(1)求点到平面的距离;

(2)若的中点,求二面角的正弦值.

查看答案和解析>>

同步练习册答案