【题目】某单位N名员工参加“社区低碳你我他”活动.他们的年龄在25岁至50岁之间.按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如图所示.下表是年龄的频率分布表.
区间 | [25,30) | [30,35) | [35,40) | [40,45) | [45,50] |
人数 | 25 | a | b | ||
(1)求正整数a,b,N的值;
(2)现要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,则年龄在第1,2,3组的人数分别是
多少?
(3)在(2)的条件下,从这6人中随机抽取2人参加社区宣传交流活动,求恰有1人在第3组的概率.
【答案】(1)25,100,250; (2)1人,1人,4人; (3) .
【解析】
⑴根据频率分布直方图的意义并结合表格内的已知数可以求得,,
⑵先求出这三组的总人数,根据分层抽样的取样方法求得每组取样的人数
⑶利用列举法列出所有的组合方式共有种,其中满足条件的组合有种,利用古典概型概率公式求得结果
(1)由频率分布直方图可知,[25,30)与[30,35)两组的人数相同,所以.
且 总人数
(2)因为第1,2,3组共有人,利用分层抽样在150名员工中抽取6人,每组抽取的人数分别为:
第1组的人数为, 第2组的人数为,第3组的人数为,
所以第1,2,3组分别抽取1人,1人,4人.
(3)由(2)可设第1组的1人为,第2组的1人为,第3组的4人分别为,,,则从6人中抽取2人的所有可能结果为:
,,,,,,,,,,,,,共有15种.其中恰有1人年龄在第3组的所有结果为:,,,,,,,,共有8种.
所以恰有1人年龄在第3组的概率为.
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱中,平面,为边上一点,,.
(1)证明:平面平面.
(2)若,试问:是否与平面平行?若平行,求三棱锥的体积;若不平行,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为实现国民经济新“三步走”的发展战略目标,国家加大了扶贫攻坚的力度,某地区在2015年以前的年均脱贫率(脱贫的户数占当年贫困户总数的比)为70%,2015年开始全面实施“精准扶贫”政策后,扶贫效果明显提高,其中2019年度实施的扶贫项目,各项目参加户数占比(参加户数占2019年贫困总户数的比)及该项目的脱贫率见下表:
实施项目 | 种植业 | 养殖业 | 工厂就业 |
参加占户比 | 45% | 45% | 10% |
脱贫率 | 96% | 96% | 90% |
那么2019年的年脱贫率是实施“精准扶贫”政策前的年均脱贫率的( )倍.
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】垃圾分类,是指按一定规定或标准将垃圾分类储存、分类投放和分类搬运,从而转变成公共资源的一系列活动的总称.分类的目的是提高垃圾的资源价值和经济价值,力争物尽其用.2019年6月25日,生活垃圾分类制度入法.到2020年底,先行先试的46个重点城市,要基本建成垃圾分类处理系统;其他地级城市实现公共机构生活垃圾分类全覆盖.某机构欲组建一个有关“垃圾分类”相关事宜的项目组,对各个地区“垃圾分类”的处理模式进行相关报道.该机构从600名员工中进行筛选,筛选方法:每位员工测试,,三项工作,3项测试中至少2项测试“不合格”的员工,将被认定为“暂定”,有且只有一项测试“不合格”的员工将再测试,两项,如果这两项中有1项以上(含1项)测试“不合格”,将也被认定为“暂定”,每位员工测试,,三项工作相互独立,每一项测试“不合格”的概率均为.
(1)记某位员工被认定为“暂定”的概率为,求;
(2)每位员工不需要重新测试的费用为90元,需要重新测试的总费用为150元,除测试费用外,其他费用总计为1万元,若该机构的预算为8万元,且该600名员工全部参与测试,问上述方案是否会超过预算?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知为抛物线上一点,斜率分别为,的直线PA,PB分别交抛物线于点A,B(不与点P重合).
(1)证明:直线AB的斜率为定值;
(2)若△ABP的内切圆半径为.
(i)求△ABP的周长(用k表示);
(ii)求直线AB的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着互联网金融的不断发展,很多互联网公司推出余额增值服务产品和活期资金管理服务产品,如蚂蚁金服旗下的“余额宝”,腾讯旗下的“财富通”,京东旗下“京东小金库”.为了调查广大市民理财产品的选择情况,随机抽取1100名使用理财产品的市民,按照使用理财产品的情况统计得到如下频数分布表:
分组 | 频数(单位:名) |
使用“余额宝” | |
使用“财富通” | |
使用“京东小金库” | 40 |
使用其他理财产品 | 60 |
合计 | 1100 |
已知这1100名市民中,使用“余额宝”的人比使用“财富通”的人多200名.
(1)求频数分布表中,的值;
(2)已知2018年“余额宝”的平均年化收益率为,“财富通”的平均年化收益率为,“京东小金库”的平均年化收益率为,有3名市民,每个人理财的资金有10000元,且分别存入“余额宝”“财富通”“京东小金库”,求这3名市民2018年理财的平均年化收益率;
(3)若在1100名使用理财产品的市民中,从使用“余额宝”和使用“财富通”的市民中按分组用分层抽样方法共抽取5人,然后从这5人中随机选取2人,求“这2人都使用‘财富通’”的概率.
注:平均年化收益率,也就是我们所熟知的利率,理财产品“平均年化收益率为”即将100元钱存入某理财产品,一年可以获得3元利息.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知分别为椭圆的左、右焦点,为该椭圆的一条垂直于轴的动弦,直线与轴交于点,直线与直线的交点为.
(1)证明:点恒在椭圆上.
(2)设直线与椭圆只有一个公共点,直线与直线相交于点,在平面内是否存在定点,使得恒成立?若存在,求出该点坐标;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com