精英家教网 > 高中数学 > 题目详情
设a和b分别是先后抛掷一枚骰子得到的点数,且随机变量ξ表示方程ax2+bx+1=0的实根的个数(相等的两根算一个根).
(1)求方程ax2+bx+1=0无实根的概率;
(2)求随机变量ξ的概率分布列;
(3)求在先后两次出现的点数中有4的条件下,方程ax2+bx+1=0有实根的概率.
基本事件总数为:6×6=36
(1)若方程无实根,则△=b2-4a<0即b2<4a
若a=1,则b=1,
若a=2,则b=1,2
若a=3,则b=1,2,3
若a=4,则b=1,2,3
若a=5,则b=1,2,3,4
若a=6,则b=1,2,3,4
∴目标事件个数为1+2+3+3+4+4=17
因此方程ax2+bx+1=0有实根的概率为
17
36
…(6分)
(2)由题意知,ξ=0,1,2,
P(ξ=0)=
17
36
,P(ξ=1)=
2
36
=
1
18
,P(ξ=2)=
17
36

故ξ的分布列为

(3)记“先后两次出现的点数中有4”为事件M,
“方程ax2+bx+1=0有实根”为事件N,则
P(M)=
11
36
,P(MN)=
5
36
P(N/M)=
P(MN)
P(M)
=
5
36
11
36
=
5
11
…(4分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

某计算机程序每运行一次都随机出现一个二进制的六位数,其中 的各位数中,2,3,4,5)出现0的概率为,出现1的概率为,记,当该计算机程序运行一次时,求随机变量的分布列和数学期望。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设某地区型血的人数占总人口数的比为,现从中随机抽取3人.
(1)求3人中恰有2人为型血的概率;
(2)记型血的人数为,求的概率分布与数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设随机变量的分布列如下表所示,且a+2b=1.3,则a-b=______.
ξ0123
P0.1ab0.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

现有甲、乙两个靶,其射手向甲靶射击一次,命中的概率为
3
4
,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为
2
3
,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立,假设该射手完成以上三次射击.
(1)求该射手恰好命中一次的概率;
(2)求该射手的总得分X的分布列.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某学校举行知识竞赛,第一轮选拔共设有A,B,C,D四个问题,规则如下:①每位参加者计分器的初始分均为10分,答对问题A,B,C,D分别加1分,2分,3分,6分,答错任意题减2分;
②每答一题,计分器显示累计分数,当累积分数小于8分时,答题结束,淘汰出局;当累积分数大于或等于14分时,答题结束,进入下一轮;答完四题累计分数不足14分时,答题结束淘汰出局;
③每位参加者按A,B,C,D顺序作答,直至答题结束.
假设甲同学对问题A,B,C,D回答正确的概率依次为
3
4
1
2
1
3
1
4
,且各题回答正确与否相互之间没有影响.
(Ⅰ)求甲同学能进入下一轮的概率;
(Ⅱ)用ξ表示甲同学本轮答题的个数,求ξ的分布列和数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某工厂生产两批产品,第一批的10件产品中优等品有4件;第二批的5件产品中优等品有3件,现采用分层抽样方法从两批产品中共抽取3件进行质量检验.
(I)求从两批产品各抽取的件数;
(Ⅱ)记ξ表示抽取的3件产品中非优等品的件数,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

一个盒子里装有7张卡片, 其中有红色卡片4张, 编号分别为1, 2, 3, 4; 白色卡片3张, 编号分别为2, 3, 4.从盒子中任取4张卡片 (假设取到任何一张卡片的可能性相同).
(1)求取出的4张卡片中, 含有编号为3的卡片的概率.
(2)再取出的4张卡片中, 红色卡片编号的最大值设为X, 求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设随机变量X的分布列为
(1)求常数的值;
(2)若,求

查看答案和解析>>

同步练习册答案