精英家教网 > 高中数学 > 题目详情
2.如图,在棱长为2的正四面体A-BCD中,E、F分别为直线AB、CD上的动点,且$|{EF}|=\sqrt{3}$.若记EF中点P的轨迹为L,则|L|等于$\frac{π}{4}$.(注:|L|表示L的测度,在本题,L为曲线、平面图形、空间几何体时,|L|分别对应长度、面积、体积.)

分析 由题意画出图形,通过取特殊点找到P的轨迹,再由圆的面积公式得答案.

解答 解:如图,

当E为AB中点时,F分别在C,D处,满足|EF|=$\sqrt{3}$,
此时EF的中点P在EC,ED的中点P1,P2的位置上,
当F为CD中点时,E分别在A,B处,满足|EF|=$\sqrt{3}$,
此时EF的中点P在BF,AF的中点P3,P4的位置上,
连接P1P2,P3P4相交于点O,则四点P1,P2,P3,P4共圆,
圆心为O,圆的半径为$\frac{1}{2}$,则EF中点P的轨迹为L为以O为圆心,以$\frac{1}{2}$为半径的圆,
其测度|L|=$2π×\frac{1}{2}=π$.
故答案为:π.

点评 本题考查空间中的线面关系,考查数形结合的解题思想方法,明确P的轨迹是关键,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.设变量x,y满足约束条件$\left\{{\begin{array}{l}{x+y≥2}\\{x-y≤1}\\{y≤2}\end{array}}\right.$则目标函数z=-2x+y的最小值为-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在直三棱柱ABC-A1B1C1中,△ABC是正三角形,E是棱BB1的中点.
(Ⅰ)求证平面AEC1⊥平面AA1C1C;
(Ⅱ)若AA1=AB,求二面角C-AE-C1的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,△ABC为边长为2的正三角形,AE∥CD,且AE⊥平面ABC,2AE=CD=2.
(1)求证:平面BDE⊥平面BCD;
(2)求三棱锥D-BCE的高.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=ex-ax+b(a,b∈R).
(Ⅰ)若a=b=1,求f(x)在区间[-1,2]上的取值范围;
(Ⅱ)若对任意x∈R,f(x)≥0恒成立,记M(a,b)=a-b,求M(a,b)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=ax+x2-xlna-b(a>1,b∈R),e是自然对数的底数.若存在x1,x2∈[-1,1],使得|f(x1)-f(x2|≥e-1,则实数a的取值范围是[e,+∞).(参考公式:(ax)′=axlna)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数$f(x)=\sqrt{3}sin2x-cos2x$的图象在区间$[{0,\frac{a}{3}}]$和$[{2a,\frac{4π}{3}}]$上均单调递增,则正数a的取值范围是(  )
A.$[{\frac{π}{6},\frac{5π}{12}}]$B.$[{\frac{5π}{12},π}]$C.$[{\frac{π}{4},π}]$D.$[{\frac{π}{4},\frac{2π}{3}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合M={x|1<x≤3},若N={x|2<x≤5},则M∪N=(  )
A.{x|1<x≤5}B.{x|2<x≤3}C.{x|1≤x<2或3≤x≤5}}D.{x|1≤x≤5}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知二次函数f(x)=ax2-2x+c的值域为[0,+∞),则$\frac{9}{a}+\frac{1}{c}$的最小值为(  )
A.3B.6C.9D.12

查看答案和解析>>

同步练习册答案