精英家教网 > 高中数学 > 题目详情

【题目】如图,已知四棱锥PABCD中,底面ABCD是直角梯形,AD//BCBC2ADADCDPD⊥平面ABCDEPB的中点.

(1)求证:AE//平面PDC

(2)BCCDPD,求直线AC与平面PBC所成角的余弦值.

【答案】1)证明见解析;(2

【解析】

1)取的中点,连结,推导出四边形是平行四边形,从而,由此能证明平面

2)推导出,由,得,再推导出,从而平面,进而平面,连结,则就是直线与平面所成角,由此能求出直线与平面所成角的余弦值.

解:(1)证明:取的中点,连结

的中点,,且

,且

四边形是平行四边形,

平面平面

2)解:是等腰三角形,

,又

平面平面

,又平面

平面

平面

连结,则就是直线与平面所成角,

中,解得

中,解得

中,

直线与平面所成角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某学校为了选拔学生参加“XX市中学生知识竞赛,先在本校进行选拔测试,若该校有100名学生参加选拔测试,并根据选拔测试成绩作出如图所示的频率分布直方图.

1)根据频率分布直方图,估算这100名学生参加选拔测试的平均成绩;

2)该校推荐选拔测试成绩在110以上的学生代表学校参加市知识竞赛,为了了解情况,在该校推荐参加市知识竞赛的学生中随机抽取2人,求选取的两人的选拔成绩在频率分布直方图中处于不同组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形垂直于正方形垂直于平面.且

(1)求三棱锥的体积;

(2)求证:面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】互联网时代的今天,移动互联快速发展,智能手机技术不断成熟,价格却不断下降,成为了生活中必不可少的工具中学生是对新事物和新潮流反应最快的一个群体之一逐渐地,越来越多的中学生开始在学校里使用手机手机特别是智能手机在让我们的生活更便捷的同时会带来些问题,同学们为了解手机在中学生中的使用情况,对本校高二年级100名同学使用手机的情况进行调查针对调查中获得的“每天平均使用手机进行娱乐活动的时间”进行分组整理得到如图4的饼图、注:图中2单位:小时代表分组为i的情况

求饼图中a的值;

假设同一组中的每个数据可用给定区间的中点值代替,试估计样本中的100名学生每天平均使用手机的平均时间在第几组?只需写出结论

从该校随机选取一名同学,能否根据题目中所给信息估计出这名学生每天平均使用手机进行娱乐活动小于小时的概率,若能,请算出这个概率;若不能,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求的单调区间;

(2)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:若各项为正实数的数列满足,则称数列算术平方根递推数列”.

已知数列满足在二次函数的图象上.

1)试判断数列是否为算术平方根递推数列?若是,请说明你的理由;

2)记,求证:数列是等比数列,并求出通项公式

3)从数列中依据某种顺序自左至右取出其中的项,把这些项重新组成一个新数列.若数列是首项为、公比为的无穷等比数列,且数列各项的和为,求正整数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知递增数列共有2019项,且各项均不为零,,若从数列中任取两项,当时,仍是数列中的项,则数列中的各项和______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知各项都是正数的数列的前项和为,且,数列满足.

(1)求数列的通项公式;

(2)设数列满足,求和

(3)是否存在正整数,使得成等差数列?若存在,求出所有满足要求的,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,射线均为笔直的公路,扇形区域(含边界)是一蔬菜种植园,其中分别在射线上.经测量得,扇形的圆心角(即)为、半径为1千米.为了方便菜农经营,打算在扇形区域外修建一条公路,分别与射线交于两点,并要求与扇形弧相切于点.设(单位:弧度),假设所有公路的宽度均忽略不计.

(1)试将公路的长度表示为的函数,并写出的取值范围;

(2)试确定的值,使得公路的长度最小,并求出其最小值.

查看答案和解析>>

同步练习册答案