【题目】2022年北京冬季奥运会即第24届冬季奥林匹克运动会,将在2022年2月4至2月20日在北京和张家口联合举行.某研究机构为了解大学生对冰壶运动的兴趣,随机从某大学学生中抽取了120人进行调查,经统计男生与女生的人数之比为11:13,男生中有30人表示对冰壶运动有兴趣,女生中有15人表示对冰壶运动没有兴趣.
(1)完成2×2列联表,并回答能否有99%的把握认为“对冰壶是否有兴趣与性别有关”?
有兴趣 | 没有兴趣 | 合计 | |
男 | 30 | ||
女 | 15 | ||
合计 | 120 |
(2)若将频率视为概率,现再从该校全体学生中,采用随机抽样的方法每次抽取1名学生,抽取5次,记被抽取的5名学生中对冰壶有兴趣的人数为X,若每次抽取的结果是相互独立的,求X的分布列,期望和方差.
附:参考公式,其中n=a+b+c+d.
临界值表:
P(K2≥K0) | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 |
K0 | 2.072 | 2.076 | 3.841 | 5.024 | 6.635 |
【答案】(1)填表见解析;有99%的把握认为“对冰壶是否有兴趣与性别有关”(2)详见解析
【解析】
(1)先根据比例关系求解男女同学的人数,完成表格,求解观测值得出结论;
(2)根据二项分布的特点求解分布列和期望、方差.
(1)因为男生与女生的人数之比为11:13,且总人数为120,所以男生共有55人,女生共有65人;表格如下:
有兴趣 | 没有兴趣 | 合计 | |
男 | 30 | 25 | 55 |
女 | 50 | 15 | 65 |
合计 | 80 | 40 | 120 |
根据表格求出K2,
故有99%的把握认为“对冰壶是否有兴趣与性别有关”.
(2)由列表可知,对冰壶有兴趣的学生频率为,将其视为概率,
由题意X~B(5,),
X | 0 | 1 | 2 | 3 | 4 | 5 |
P |
E(X)=np,D(x)=npq.
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)设θ∈[0,π],且f(θ)1,求θ的值;
(2)在△ABC中,AB=1,f(C)1,且△ABC的面积为,求sinA+sinB的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|2x+3|+|2x﹣1|.
(1)求不等式f(x)≤6的解集;
(2)若关于x的不等式f(x)<|m﹣1|的解集非空,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若数列{an}满足a1=1,a2=1,an+2=an+an+1,则称数列{an}为斐波那契数列,斐波那契螺旋线是根据斐波那契数列画出来的螺旋曲线,自然界中存在许多斐波那契螺旋线的图案,是自然界最完美的经典黄金比例.作图规则是在以斐波那契数为边的正方形拼成的长方形中画一个圆心角为90°的扇形,连起来的弧线就是斐波那契螺旋线,如图所示的7个正方形的边长分别为a1,a2,…,a7,在长方形ABCD内任取一点,则该点不在任何一个扇形内的概率为( )
A.1B.1C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司销售部随机抽取了1000名销售员1天的销售记录,经统计,其柱状图如图.
该公司给出了两种日薪方案.
方案1:没有底薪,每销售一件薪资20元;
方案2:底薪90元,每日前5件的销售量没有奖励,超过5件的部分每件奖励20元.
(1)分别求出两种日薪方案中日工资y(单位:元)与销售件数n的函数关系式;
(2)若将频率视为概率,回答下列问题:
(Ⅰ)根据柱状图,试分别估计两种方案的日薪X(单位:元)的数学期望及方差;
(Ⅱ)如果你要应聘该公司的销售员,结合(Ⅰ)中的数据,根据统计学的思想,分析选择哪种薪资方案比较合适,并说明你的理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x+2x,g(x)=x+ln x,h(x)=x--1的零点分别为x1,x2,x3,则x1,x2,x3的大小关系是________(由小到大).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PPD//平面MAC,PA=PD=,AB=4.
(I)求证:M为PB的中点;
(II)求二面角B-PD-A的大小;
(III)求直线MC与平面BDP所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com