【题目】已知点,圆.
(Ⅰ)若直线过点且到圆心的距离为1,求直线的方程;
(Ⅱ)设过点的直线与圆交于两点(的斜率为正),当时,求以线段为直径的圆的方程.
【答案】(Ⅰ)或;(Ⅱ) .
【解析】试题分析: 把圆的方程变为标准方程后,分两种情况,①当直线的斜率存在时,因为直线经过点,设出直线的方程,利用点到直线的距离公式表示出圆心到所设直线的距离,让等于列出关于的方程,求出方程的解即可得到的值,根据的值和的坐标写出直线的方程;②当直线的斜率不存在时,直线的方程为;
设直线的方程为,根据点到直线距离可以求出的值,再次联立直线与圆的方程解得中点坐标,即可以求出以线段为直径的圆的方程
解析:(Ⅰ)由题意知,圆的标准方程为: ,
∴圆心,半径,
①当直线的斜率存在时,设直线的方程为,即,
∴,解得,
∴直线的方程为,即.
②当直线的斜率不存在时,直线的方程为,
此时直线到圆心的距离为1,符合题意.
综上,直线的方程为或.
(Ⅱ)设过点的直线的方程为即,
则圆心到直线的距离,
解得,∴直线的方程为即,
联立直线与圆的方程得,
消去得,则中点的纵坐标为,
把代入直线中得,∴ 中点的坐标为,
由题意知,所求圆的半径为: ,
∴以线段为直径的圆的方程为: .
科目:高中数学 来源: 题型:
【题目】若函数是定义在实数集上的奇函数,并且在区间上是单调递增的函数.
(1)研究并证明函数在区间上的单调性;
(2)若实数满足不等式,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知F1(﹣c,0)、F2(c,0)分别是椭圆G: 的左、右焦点,点M是椭圆上一点,且MF2⊥F1F2 , |MF1|﹣|MF2|= a.
(1)求椭圆G的方程;
(2)若斜率为1的直线l与椭圆G交于A、B两点,以AB为底作等腰三角形,顶点为P(﹣3,2),求△PAB的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,等边三角形的中线与中位线相交于,已知是绕旋转过程中的一个图形,给出以下四个命题:①平面;②平面平面;③动点在平面上的射影在线段上;④异面直线与不可能垂直. 其中正确命题的个数是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图四棱锥P﹣ABCD中,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=2 ,BC=4 ,PA=2,点M在线段PD上.
(1)求证:AB⊥PC.
(2)若二面角M﹣AC﹣D的大小为45°,求BM与平面PAC所成的角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C对应的边分别是a,b,c,已知cos2A﹣3cos(B+C)=1.
(Ⅰ)求角A的大小;
(Ⅱ)若△ABC的面积S=5 ,b=5,求sinBsinC的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,圆,点,点是圆上的动点,线段的垂直平分线交线段于点,设分别为点的横坐标,定义函数,给出下列结论:
①;②是偶函数;③在定义域上是增函数;
④图象的两个端点关于圆心对称;
⑤动点到两定点的距离和是定值.
其中正确的是__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com