精英家教网 > 高中数学 > 题目详情

【题目】己知函数,它的导函数为.

(1)当时,求的零点;

(2)若函数存在极小值点,求的取值范围.

【答案】(1)的零点;(2)

【解析】

1)求得时的,由单调性及求得结果.

2)当时,,易得存在极小值点,再分当时和当时,令,通过研究的单调性及零点情况,得到的零点及分布的范围,进而得到的极值情况,综合可得结果.

1的定义域为

时,.

易知上的增函数,

,所以的零点.

2

时,,令,得;令,得

所以上单调递减,在上单调递增,符合题意.

,则.

时,,所以上单调递增.

所以上恰有一个零点,且当时,;当时,,所以的极小值点,符合题意.

时,令,得.

)时,;当时,

所以.

,即当时,恒成立,

上单调递增,无极值点,不符合题意.

,即当时,

所以,即上恰有一个零点,且当时,;当时,

所以的极小值点,符合题意.

综上,可知,即的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】中国国际智能产业博览会(智博会)每年在重庆市举办一届,每年参加服务的志愿者分“嘉宾”、“法医”等若干小组,年底,来自重庆大学、西南大学、重庆医科大学、西南政法大学的500名学生在重庆科技馆多功能厅参加了“志愿者培训”,如图是四所大学参加培训人数的不完整条形统计图,现用分层抽样的方法从中抽出20人作为2019年中国国际智博会服务的志愿者.

(1)分别求出从重庆大学、西南大学、重庆医科大学、西南政法大学抽出的志愿者人数;

(2)若“嘉宾”小组的2名志愿者只能从重庆医科大学或西南政法大学抽出,求这2人分别来自不同大学的概率(结果用分数表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着城市地铁建设的持续推进,市民的出行也越来越便利.根据大数据统计,某条地铁线路运行时,发车时间间隔t(单位:分钟)满足:4≤t≤15N,平均每趟地铁的载客人数p(t)(单位:人)与发车时间间隔t近似地满足下列函数关系:,其中.

(1)若平均每趟地铁的载客人数不超过1500人,试求发车时间间隔t的值.

(2)若平均每趟地铁每分钟的净收益为(单位:元),问当发车时间间隔t为多少时,平均每趟地铁每分钟的净收益最大?井求出最大净收益.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在长方体中,分别是棱的中点,是底面内一动点,若直线与平面平行,则三角形面积最小值为( )

A.B.1C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x﹣2)ex+x,其中∈R,e是自然对数的底数.

(1)当>0时,讨论函数f(x)在(1,+∞)上的单调性;

(2)若函数g(x)=f(x)+2﹣证明:使gx)≥0上恒成立的实数a能取到的最大整数值为1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,过轴的垂线交椭圆于点(点轴上方),斜率为的直线交椭圆两点,过点作直线交椭圆于点,且,直线轴于点.

(1)设椭圆的离心率为,当点为椭圆的右顶点时,的坐标为,求的值.

(2)若椭圆的方程为,且,是否存在使得成立?如果存在,求出的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的各项都是正数,若对于任意的正整数,存在,使得成等比数列,则称函数为“型”数列.

(1)若是“型”数列,且,求的值;

(2)若是“型”数列,且,求的前项和

(3)若既是“型”数列,又是“型”数列,求证:数列是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(2x-4)exa(x+2)2(x>0,aR,e是自然对数的底数).

(1)f(x)(0,+∞)上的单调递增函数,求实数a的取值范围;

(2)a时,证明:函数f(x)有最小值,并求函数f(x)的最小值的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

1)当时,求使得等式成立的的取值范围;

2)当时,求使得等式成立的的取值范围;

3)求的区间上的最大值.

查看答案和解析>>

同步练习册答案