精英家教网 > 高中数学 > 题目详情

已知二次函数f(x)=ax2+(a2+b)x+c的图象开口向上,且f(0)=1,f(1)=0,则实数 b的取值范围是


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    [0,+∞)
  4. D.
    (-∞,-1)
D
分析:根据题意可得a>0,又f(0)=1,f(1)=0,即可得a与b的关系式为b=-a2-a-1.结合二次函数的性质求出b的取值范围即可.
解答:因为二次函数f(x)=ax2+(a2+b)x+c的图象开口向上,
所以a>0.
又因为f(0)=1,f(1)=0,
所以解得b=-a2-a-1.
即b=,(a>0)
所以b的范围是(-∞,-1).
故选A.
点评:解决此类问题的关键是熟练掌握一元二次函数的有关性质与解题技巧.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+2(m-2)x+m-m2
(I)若函数的图象经过原点,且满足f(2)=0,求实数m的值.
(Ⅱ)若函数在区间[2,+∞)上为增函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a≠0)的图象过点(0,1),且与x轴有唯一的交点(-1,0).
(Ⅰ)求f(x)的表达式;
(Ⅱ)设函数F(x)=f(x)-kx,x∈[-2,2],记此函数的最小值为g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-16x+q+3.
(1)若函数在区间[-1,1]上存在零点,求实数q的取值范围;
(2)若记区间[a,b]的长度为b-a.问:是否存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且D的长度为12-t?请对你所得的结论给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州一模)已知二次函数f(x)=x2+ax+m+1,关于x的不等式f(x)<(2m-1)x+1-m2的解集为(m,m+1),其中m为非零常数.设g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值时,函数φ(x)=g(x)-kln(x-1)存在极值点,并求出极值点;
(3)若m=1,且x>0,求证:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知二次函数f(x)的图象与x轴的两交点为(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函数f(x)的图象的顶点是(-1,2),且经过原点,求f(x)的解析式.

查看答案和解析>>

同步练习册答案