精英家教网 > 高中数学 > 题目详情
(2012•洛阳模拟)如图,在△ABC中,|AB|=|AC|=
72
,|BC|=2
,以B、C为焦点的椭圆恰好过AC的中点P.
(1)求椭圆的标准方程;
(2)过椭圆的右顶点A1作直线l与圆E:(x-1)2+y2=2相交于M、N两点,试探究点M、N能将圆E分割成弧长比值为1:3的两段弧吗?若能,求出直线l的方程;若不能,请说明理由.
分析:(1)确定A,C的坐标,即可得到P的坐标,利用椭圆的定义,求得长轴长,进而可求椭圆的方程;
(2)椭圆的右顶点A1(2,0),圆E的圆心为E(1,0),半径r=
2
,假设点M、N能将圆E分割成弧长比值为1:3的两段弧,则可得∠MEN=90°,圆心E(1,0)到直线l的距离,分类讨论:当直线l斜率不存在时,l的方程为x=2;当直线l斜率存在时,设l的方程为y=k(x-2),即kx-y-2k=0,求出圆心E(1,0)到直线l的距离即可得到结论.
解答:解:(1)∵|AB|=|AC|=
7
2
,|BC|=2

∴|BO|=|OC|=1,|OA|=
|AC|2-|OC|2
=
49
4
-1
=
3
5
2
…(2分)
B(-1,0),C(1,0),A(0,
3
5
2
)

P(
1
2
3
5
4
)
…(4分)
依椭圆的定义有:2a=|PB|+|PC|=
(
1
2
+1)
2
+(
3
5
4
-0)
2
+
(
1
2
-1)
2
+(
3
5
4
-0)
2
=
9
4
+
7
4
=4

∴a=2,…(6分)
又c=1,∴b2=a2-c2=3…(7分)
∴椭圆的标准方程为
x2
4
+
y2
3
=1
…(8分)
(2)椭圆的右顶点A1(2,0),圆E的圆心为E(1,0),半径r=
2

假设点M、N能将圆E分割成弧长比值为1:3的两段弧,则∠MEN=90°,圆心E(1,0)到直线l的距离d=
2
2
r=1
…(10分)
当直线l斜率不存在时,l的方程为x=2,此时圆心E(1,0)到直线l的距离d=1(符合)…(11分)
当直线l斜率存在时,设l的方程为y=k(x-2),即kx-y-2k=0,
∴圆心E(1,0)到直线l的距离d=
|k|
k2+1
=1
,无解…(13分)
综上:点M、N能将圆E分割成弧长比值为1:3的两段弧,此时l方程为x=2…(14分).
点评:本题考查椭圆的标准方程,考查椭圆的定义,考查直线与圆的位置关系,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•洛阳模拟)在△ABC中,角A、B、C所对的边分别为a、b、c,
q
=(2a,1),
p
=(2b-c,cosC)且
p
q

求:
(I)求sinA的值;
(II)求三角函数式
-2cos2C
1+tanC
+1
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•洛阳模拟)若a=
ln26
4
,b=ln2ln3,c=
ln2π
4
,则a,b,c的大小关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•洛阳模拟)阅读如图的算法框图,输出的结果S的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•洛阳模拟)设变量x,y满足约束条件:
x+y≥3
x-y≥-1
2x-y≤3
.则目标函数z=2x+3y的最小值为
7
7

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•洛阳模拟)已知三棱锥S-ABC的所有顶点都在球O的球面上,SA⊥平面ABC,SA=2
3
,AB=1,AC=2,∠BAC=60°,则球O的表面积为
(  )

查看答案和解析>>

同步练习册答案