【题目】已知正方形的边长为,将沿对角线折起,使平面平面,得到如图所示的三棱锥,若为边的中点,分别为上的动点(不包括端点),且,设,则三棱锥的体积取得最大值时,三棱锥的内切球的半径为_______.
科目:高中数学 来源: 题型:
【题目】已知函数,,若函数有三个不同的零点,,(其中),则的取值范围为__________.
【答案】
【解析】如图:
,,作出函数图象如图所示
,,作出函数图象如图所示
,由有三个不同的零点
,如图
令
得
为满足有三个零点,如图可得
,
点睛:本题考查了函数零点问题,先由导数求出两个函数的单调性,继而画出函数图像,再由函数的零点个数确定参量取值范围,将问题转化为函数的两根问题来求解,本题需要化归转化,函数的思想,零点问题等较为综合,有很大难度。
【题型】填空题
【结束】
17
【题目】已知等比数列的前项和为,且满足.
(1)求数列的通项公式;
(2)若数列满足,求数列的前项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了估计某校某次数学考试的情况,现从该校参加考试的600名学生中随机抽出60名学生,其数学成绩(百分制)均在内,将这些成绩分成六组…,得到如图所示的部分频率分布直方图.
(1)求抽出的60名学生中数学成绩在内的人数;
(2)若规定成绩不小于85分为优秀,则根据频率分布直方图,估计该校参加考试的学生数学成绩为优秀的人数;
(3)试估计抽出的60名学生的数学成绩的中位数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来,雾霾日趋严重,雾霾的工作、生活受到了严重的影响,如何改善空气质量已成为当今的热点问题,某空气净化器制造厂,决定投入生产某型号的空气净化器,根据以往的生产销售经验得到下面有关生产销售的统计规律,每生产该型号空气净化器(百台),其总成本为(万元),其中固定成本为12万元,并且每生产1百台的生产成本为10万元(总成本=固定成本+生产成本),销售收入(万元)满足,假定该产品销售平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:
(1)求利润函数的解析式(利润=销售收入-总成本);
(2)工厂生产多少百台产品时,可使利润最多?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】填空:
(1)如果,且,则是第________象限角;
(2)如果,且,则是第________象限角;
(3)如果,且,则是第________象限角;
(4)如果,且,则是第________象限角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,是以为斜边的直角三角形,,,,.
(1)若线段上有一个点,使得平面,请确定点的位置,并说明理由;
(2)若平面平面,求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于圆周率,数学发展史上出现过许多很有创意的求法,如著名的蒲丰试验.受其启发,我们也可以通过设计下面的试验来估计的值,试验步骤如下:①先请高二年级 500名同学每人在小卡片上随机写下一个实数对;②若卡片上的能与1构成锐角三角形,则将此卡片上交;③统计上交的卡片数,记为;④根据统计数估计的值.假如本次试验的统计结果是,那么可以估计的值约为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经销商小王对其所经营的某一型号二手汽车的使用年数(0<≤10)与销售价格(单位:万元/辆)进行整理,得到如下的对应数据:
使用年数 | 2 | 4 | 6 | 8 | 10 |
售价 | 16 | 13 | 9.5 | 7 | 4.5 |
(Ⅰ)试求关于的回归直线方程;
(附:回归方程中,
(Ⅱ)已知每辆该型号汽车的收购价格为万元,根据(Ⅰ)中所求的回归方程,
预测为何值时,小王销售一辆该型号汽车所获得的利润最大.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com