精英家教网 > 高中数学 > 题目详情
17.已知幂函数y=f(x)的图象过点$(3,\frac{{\sqrt{3}}}{3})$,则$f({log_2}f(\frac{1}{2}))$=(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{2}$C.$-\sqrt{2}$D.$\frac{1}{2}$

分析 设幂函数为f(x)=xα,代入点$(3,\frac{{\sqrt{3}}}{3})$,解得α,即可得到.

解答 解:设幂函数为f(x)=xα,代入点$(3,\frac{{\sqrt{3}}}{3})$得,$\frac{{\sqrt{3}}}{3}={3^α}⇒α=-\frac{1}{2}$,
∴$f(x)={x^{-\frac{1}{2}}}$,
则$f({log_2}f(\frac{1}{2}))=f({log_2}{(\frac{1}{2})^{-\frac{1}{2}}})=f(\frac{1}{2})={(\frac{1}{2})^{-\frac{1}{2}}}=\sqrt{2}$,
故选:B.

点评 本题考查了幂函数的解析式、函数求值、对数运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知cos(π+x)=$\frac{4}{5}$,x∈(π,2π),则cos($\frac{π}{2}-x$)=(  )
A.-$\frac{3}{5}$B.-$\frac{4}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知A(1,1),B(4,5),则AB=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合A={x|x2≤x},B={x|0<x≤1},则下列结论正确的是(  )
A.A=BB.A∩B=∅C.A∩B=AD.A∪B=A

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.为了解某校学生喜爱打篮球是否与性别有关,采用随机抽样方法抽取了50名学生进行问卷调查,得到如下的列联表:
喜爱打篮球不喜爱打篮球合计
男生5
女生10
合计50
已知在这50名学生中随机抽取1人,抽到喜爱打篮球的学生的概率为$\frac{3}{5}$.
(Ⅰ)请将上面的列联表补充完整;
(Ⅱ)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由;
(Ⅲ)记不喜爱打篮球的5名男生分别为A、B、C、D、E,这5名男生喜爱打乒乓球,
如果从他们当中任选2人作为一对组合参加乒乓球男子双打比赛,求A、B中恰好有1人被选中的概率.
下面的临界值表供参考:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知方程${x^2}+\frac{x}{tanθ}-\frac{1}{sinθ}=0$有两个不等实根a,b,则过点A(a,a2),B(b,b2)的直线与圆x2+y2=2的位置关系是相交.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设等比数列{an}的公比q≠1,其前n项和为Sn,且${S_n}={q^n}+k$,则k=(  )
A.2B.1C.0D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.若实数x,y,m满足|x-m|<|y-m|,则称x比y接近m.
(1)若4比x2-3x接近0,求x的取值范围;
(2)对于任意的两个不等正数a,b,求证:a+b比$\frac{b^2}{a}+\frac{a^2}{b}$接近$2\sqrt{ab}$;
(3)若对于任意的非零实数x,实数a比$x+\frac{4}{x}$接近-1,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知x+y=1,x4+y4的最小值是$\frac{1}{8}$.

查看答案和解析>>

同步练习册答案