A. | $\frac{4}{3}π$ | B. | $\frac{2}{3}π$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{6}$ |
分析 根据题意,连接N点与D点,得到一个直角三角形△NMD,P为斜边MN的中点,所以|PD|的长度不变,进而得到点P的轨迹是球面的一部分,然后利用球的体积公式进行求解.
解答 解:如图可得,端点N在正方形ABCD内运动,连接N点与D点,由ND,DM,MN构成一个直角三角形,
设P为MN的中点,根据直角三角形斜边上的中线长度为斜边的一半可得DP=$\frac{1}{2}$MN=1,
不论△MDN如何变化,P点到D点的距离始终等于1.
∴MN的中点P的轨迹是
不论△MDN如何变化,P点到D点的距离始终等于1.
故P点的轨迹是一个以D为中心,半径为1的球的$\frac{1}{8}$球面积.
体积为$\frac{1}{8}×\frac{4}{3}π×{1}^{3}$=$\frac{π}{6}$.
故选:D.
点评 本题主要考查点的轨迹方程的判断,考查球的体积公式,综合性较强.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [$\frac{π}{4}$,$\frac{π}{3}$]∪[$\frac{2π}{3}$,$\frac{3π}{4}$] | B. | [$\frac{π}{6}$,$\frac{π}{3}$]∪[$\frac{2π}{3}$,$\frac{5π}{6}$] | C. | [$\frac{π}{6}$,$\frac{π}{4}$]∪[$\frac{4π}{3}$,$\frac{5π}{6}$] | D. | [$\frac{π}{4}$,$\frac{π}{3}$]∪[$\frac{2π}{3}$,$\frac{5π}{5}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com