精英家教网 > 高中数学 > 题目详情
2.已知正方体ABCD-A1B1C1D1的棱长是3,线段MN的长是2,M在DD1上运动,N在平面ABCD上运动,则M,N的中点P形成的曲面与ABCD面,DCC1D1面,ADD1A1面所围成的几何体的体积是(  )
A.$\frac{4}{3}π$B.$\frac{2}{3}π$C.$\frac{π}{3}$D.$\frac{π}{6}$

分析 根据题意,连接N点与D点,得到一个直角三角形△NMD,P为斜边MN的中点,所以|PD|的长度不变,进而得到点P的轨迹是球面的一部分,然后利用球的体积公式进行求解.

解答 解:如图可得,端点N在正方形ABCD内运动,连接N点与D点,由ND,DM,MN构成一个直角三角形,
设P为MN的中点,根据直角三角形斜边上的中线长度为斜边的一半可得DP=$\frac{1}{2}$MN=1,
不论△MDN如何变化,P点到D点的距离始终等于1.
∴MN的中点P的轨迹是
不论△MDN如何变化,P点到D点的距离始终等于1.
故P点的轨迹是一个以D为中心,半径为1的球的$\frac{1}{8}$球面积.
体积为$\frac{1}{8}×\frac{4}{3}π×{1}^{3}$=$\frac{π}{6}$.
故选:D.

点评 本题主要考查点的轨迹方程的判断,考查球的体积公式,综合性较强.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=2x-4.
(1)当x<0,求f(x)的解析式;
(2)解方程:f(x)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设函数f(x)的定义域为(0,6),g(x)的定义域为[2,7],若f(x)>g(x)的解集是(3,5),则f(x)≤g(x)的解集是[2,3]∪[5,6).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=2-x(4x-m)是奇函数,g(x)=lg(10x+1)+nx是偶函数.
(I)求m+n的值;
(Ⅱ)设h(x)=$\left\{\begin{array}{l}{f(x)+1,x≤0}\\{g(x)+\frac{1}{2}x,x>0}\end{array}\right.$,试求h(x)在x∈[-2,1]时的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.光线从点M(-3,3)射到点P(1,0),然后被x轴反射,判断反射光线是否经过点Q(3,$\frac{3}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在矩形ABCD中,AB=4,BC=3,沿对角线AC把矩形折成二面角D-AC-B,并且D点在平面ABC内的射影落在AB上.
(1)证明:AD⊥平面DBC;
(2)求三棱锥D-ABC的体积;
(3)若在四面体D-ABC内有一球,当球的体积最大时,球的半径是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,正方体ABCD=A1B1C1D1,棱长为a,E、F分别为AB、BC上的点,且AE=BF=x.
(1)当三棱椎B1-BEF的体积最大时,求二面角B1-EF-B的正切值;
(2)求异面直线A1E与B1F所成的角的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率e∈[$\sqrt{2}$,2],则其渐近线的倾斜角的取值范围是(  )
A.[$\frac{π}{4}$,$\frac{π}{3}$]∪[$\frac{2π}{3}$,$\frac{3π}{4}$]B.[$\frac{π}{6}$,$\frac{π}{3}$]∪[$\frac{2π}{3}$,$\frac{5π}{6}$]C.[$\frac{π}{6}$,$\frac{π}{4}$]∪[$\frac{4π}{3}$,$\frac{5π}{6}$]D.[$\frac{π}{4}$,$\frac{π}{3}$]∪[$\frac{2π}{3}$,$\frac{5π}{5}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知F1,F2分别是椭圆$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{m}$=1(9>m>0)的左右焦点,P是该椭圆上一定点,若点P在第一象限,且|PF1|=4,PF1⊥PF2
(Ⅰ)求m的值;
(Ⅱ)求点P的坐标.

查看答案和解析>>

同步练习册答案