【题目】有一户农村居民家庭实施10年收入计划,从第 1年至7年他家的纯收入y(单位:千元)的数据如下表:
(1)将题中表填写完整,并求关于的线性回归方程;
(2)利用(1)中的回归方程,分析1年至7年该农户家庭人均纯收入的变化情况,并预测该农户第8年的家庭人均纯收入是多少.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
,
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x﹣a|,g(x)=x2+2ax+1(a为正实数),满足f(0)=g(0);
函数F(x)=f(x)+g(x)+b定义域为D.
(1)求a的值;
(2)若存在x0∈D,使F(x0)=x0成立,求实数b的取值范围;
(3)若n为正整数,证明:<4.
(参考数据:lg3=0.3010, =0.1342,=0.0281, =0.0038)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆Г: (a>b>0)的左、右焦点分别为F1 , F2 , 离心率为 ,F2与椭圆上点的连线的中最短线段的长为 ﹣1.
(1)求椭圆Г的标准方程;
(2)已知Г上存在一点P,使得直线PF1 , PF2分别交椭圆Г于A,B,若 =2 , =λ (λ>0),求λ的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率记为p1,点数之和大于5的概率记为p2,点数之和为偶数的概率记为p3,则( )
A. p1<p2<p3 B. p2<p1<p3
C. p1<p3<p2 D. p3<p1<p2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解春季昼夜温差大小与某种子发芽多少之间的关系,现在从月份的天中随机挑选了天进行研究,且分别记录了每天昼夜温差与每天颗种子浸泡后的发芽数,得到如下表格:
日期 | 月日 | 月日 | 月日 | 月日 | 月日 |
温差/℃ | |||||
发芽数/颗 |
()从这天中任选天,记发芽的种子数分别为, ,求事件“, 均不小于”的概率.
()从这天中任选天,若选取的是月日与月日的两组数据,请根据这天中的另天的数据,求出关于的线性回归方程.
()若由线性回归方程得到的估计数据与所选出的两组检验数据的误差均不超过颗,则认为得到的线性回归方程是可靠的,试问()中所得的线性回归方程是否可靠?
(参考公式: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,椭圆过点,直线交轴于,且, 为坐标原点.
(1)求椭圆的方程;
(2)设是椭圆的上顶点,过点分别作直线交椭圆于两点,设这两条直线的斜率分别为,且,证明:直线过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班同学利用寒假进行社会实践活动,对岁的人群随机抽取人进行了一次生活习惯是
否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得
到如下统计表和各年龄段人数频率分布直方图:
(I)补全频率分布直方图并求、、的值;
(II)从年龄段在的“低碳族”中采用分层抽样法抽取人参加户外低碳体验活动,其中选取人作为领队,求选取的名领队中恰有1人年龄在岁的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com