精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)=ln(1+x),g(x)=xf′(x),x≥0,其中f′(x)是f(x)的导函数.
(1)令g1(x)=g(x),gn+1(x)=g(gn(x)),n∈N+ , 求gn(x)的表达式;
(2)若f(x)≥ag(x)恒成立,求实数a的取值范围;
(3)设n∈N+ , 比较g(1)+g(2)+…+g(n)与n﹣f(n)的大小,并加以证明.

【答案】
(1)解:由题设得,

由已知

可得

下面用数学归纳法证明.①当n=1时, ,结论成立.

②假设n=k时结论成立,即

那么n=k+1时, = 即结论成立.

由①②可知,结论对n∈N+成立.


(2)解:已知f(x)≥ag(x)恒成立,即ln(1+x)≥ 恒成立.

设φ(x)=ln(1+x)﹣ (x≥0),则φ′(x)=

当a≤1时,φ′(x)≥0(仅当x=0,a=1时取等号成立),

∴φ(x)在[0,+∞)上单调递增,

又φ(0)=0,

∴φ(x)≥0在[0,+∞)上恒成立.

∴当a≤1时,ln(1+x)≥ 恒成立,(仅当x=0时等号成立)

当a>1时,对x∈(0,a﹣1]有φ′(x)<0,∴φ(x)在∈(0,a﹣1]上单调递减,

∴φ(a﹣1)<φ(0)=0

即当a>1时存在x>0使φ(x)<0,

故知ln(1+x)≥ 不恒成立,

综上可知,实数a的取值范围是(﹣∞,1].


(3)解:由题设知,g(1)+g(2)+…+g(n)=

n﹣f(n)=n﹣ln(n+1),

比较结果为g(1)+g(2)+…+g(n)>n﹣ln(n+1)

证明如下:上述不等式等价于

在(2)中取a=1,可得

故有

ln3﹣ln2 ,…

上述各式相加可得 结论得证


【解析】(1)由已知 …可得 用数学归纳法加以证明;(2)由已知得到ln(1+x)≥ 恒成立构造函数φ(x)=ln(1+x)﹣ (x≥0),利用导数求出函数的最小值即可;(3)在(2)中取a=1,可得 ,令 ,n依次取1,2,3…,然后各式相加即得到不等式.
【考点精析】解答此题的关键在于理解利用导数研究函数的单调性的相关知识,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减,以及对函数的最大(小)值与导数的理解,了解求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,半圆O的直径为2A为直径延长线上一点,OA=2B为半圆上任意一点,以线段AB为腰作等腰直角ABCCO两点在直线AB的两侧),当∠AOB变化时,OCm恒成立,则m的最小值为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等比数列{an}的各项均为正数,且a2=2,a4=
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2an , 求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平行四边形ABCD的三个顶点的坐标为

(1)求平行四边形ABCD的顶点D的坐标;

(2)求四边形ABCD的面积

(3)求的平分线所在直线方程。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:

作物产量(kg)

300

500

概率

0.5

0.5

作物市场价格(元/kg)

6

10

概率

0.4

0.6


(1)设X表示在这块地上种植1季此作物的利润,求X的分布列;
(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数x,y满足ax<ay(0<a<1),则下列关系式恒成立的是( )
A.
B.ln(x2+1)>ln(y2+1)
C.sinx>siny
D.x3>y3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:

零件的个数x(个)

2

3

4

5

加工的时间y(小时)

2.5

3

4

4.5

(1)在给定的坐标系中画出表中数据的散点图;

(2)求出y关于x的线性回归方程

(3)试预测加工10个零件需要多少小时?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在育民中学举行的电脑知识竞赛中,将九年级两个班参赛的学生成绩(得分均为整数)进行整理后分成五组,绘制如图所示的频率分布直方图.已知图中从左到右的第一、第三、第四、第五小组的频率分别是0.30,0.15,0.10,0.05,第二小组的频数是40.

(1)求第二小组的频率,并补全这个频率分布直方图;

(2)求这两个班参赛的学生人数是多少?

(3)求这两个班参赛学生的成绩的中位数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,函数恰有两个不同的零点,求实数的值;

2)当时,

若对于任意,恒有,求的取值范围;

,求函数在区间上的最大值

查看答案和解析>>

同步练习册答案