精英家教网 > 高中数学 > 题目详情
正方形ABCD所在平面与正方形ABEF所在平面成60°的二面角,则对角线AC与对角线BF对所成角的余弦值是__________.             .
.

试题分析:分别取AB,BC,AD,AF的中点M,N,Q,K,连接FM,MN,KN,QN,KQ,
则KM//FB,MN//AC,所以是异面直线AC,BF所成的角或其补角,设AB=1,则
,
所以,
所以对角线AC与对角线BF对所成角的余弦值是.
点评:找出或做出异成直线所成角是解本小题的关键,一般是在一条异面直线上取一点作另一条的平行线,如果不好做的话,可以考虑在这两条异面直线所在的两个平面的交线上取中点构造中位线来做出这个角,然后解三角形即可,本小题就属于这种情况,请认真体会.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在三棱锥中,是边长为2的正三角形,平面平面,,分别为的中点.

(1)证明:;
(2)求锐二面角的余弦值;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)如图,在三棱锥中,面是正三角形,
(Ⅰ)求证:
(Ⅱ)求平面DAB与平面ABC的夹角的余弦值;
(Ⅲ)求异面直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

正三棱锥P—ABC中,CM=2PM,CN=2NB,对于以下结论:

①二面角B—PA—C大小的取值范围是(,π);
②若MN⊥AM,则PC与平面PAB所成角的大小为
③过点M与异面直线PA和BC都成的直线有3条;
④若二面角B—PA—C大小为,则过点N与平面PAC和平面PAB都成的直线有3条.
正确的序号是         

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在长方体中,=2=,则二面角的大小是 (    )
A.300B.450C.600D.900

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正方体中,的交点,则所成角的(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)如图,已知三棱锥的侧棱两两垂直,且的中点.

(Ⅰ)求异面直线所成角的余弦值;
(Ⅱ)BE和平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正方体ABCD-A1B1C1D1中,E、F分别是AA1和B1B的中点,则D1F与CE所成角的余弦值为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥中,平面平面中点.(Ⅰ)求点B到平面的距离;(Ⅱ)求二面角的余弦值.

查看答案和解析>>

同步练习册答案