精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=2$\sqrt{3}$sin(x+$\frac{π}{4}$)cos(x+$\frac{π}{4}$)+sin2x
(1)求f(x)的最小正周期;
(2)若将f(x)的图象向右平移$\frac{π}{6}$个单位,得到函数g(x)的图象,求函数g(x)在区间$[{\frac{π}{6},\frac{7π}{12}}]$上的最大值和最小值.

分析 (1)化简得f(x)=$\sqrt{3}$cos2x+sin2x=2sin(2x+$\frac{π}{3}$),代入周期公式计算;
(2)g(x)=2sin[2(x-$\frac{π}{6}$)+$\frac{π}{3}$]=2sin2x,由x的范围得出2x的范围,结合正弦函数的单调性求出最值.

解答 解:(1)f(x)=$\sqrt{3}$sin(2x+$\frac{π}{2}$)+sin2x=$\sqrt{3}$cos2x+sin2x=2sin(2x+$\frac{π}{3}$),
∴f(x)的最小正周期是T=π;
(2)g(x)=2sin[2(x-$\frac{π}{6}$)+$\frac{π}{3}$]=2sin2x,
∵x∈$[{\frac{π}{6},\frac{7π}{12}}]$,∴2x∈[$\frac{π}{3}$,$\frac{7π}{6}$],
∴当2x=$\frac{π}{2}$时,g(x)取最大值2;
当$2x=\frac{7π}{6}$时,g(x)取最小值-1.

点评 本题考察了三角函数的恒等变换和性质,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知椭圆G:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,长轴长为4,过点(m,0)作圆x2+y2=1的切线l交椭圆G于A,B两点
(1)求椭圆G的方程;
(2)将|AB|表示为m的函数,并求|AB|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.等差数列a1,a2,a3…am的前m项和是48,a2+am-1=12,m=8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知直线l的极坐标方程为$ρsin({θ+\frac{π}{4}})=2\sqrt{2}$,圆C的参数方程为:$\left\{\begin{array}{l}x=2cosθ\\ y=-2+2sinθ\end{array}\right.({θ为参数})$.
(1)判断直线l与圆C的位置关系;
(2)若椭圆的参数方程为$\left\{\begin{array}{l}x=2cosφ\\ y=\sqrt{3}sinφ\end{array}$(φ为参数),过圆C的圆心且与直线l垂直的直线l′与椭圆相交于两点A,B,求|CA|•|CB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.将函数y=cos2x+$\sqrt{3}$sin2x(x∈R)的图象向左平移m(m>0)个长度单位后,所得到的图象关于y轴对称,则m的最小值是(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知f(x)=2cos(ωx-$\frac{π}{2}$)cos(${ωx+\frac{π}{6}}$)+2sin2ωx-1(ω>0),直线y=$\frac{1}{2}$与f(x)的图象交点之间最短距离为π.
(Ⅰ) 求f(x)的解析式及单调递增区间;
(Ⅱ)在△ABC中,角A、B、C所对的边分别是a、b、c若有(2a-c)cosB=bcosC,则求角B的大小以及f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=2cos2x+2$\sqrt{3}$sinxcosx(x∈R)..
(1)当$x∈[0,\frac{π}{2}]$时,求函数f(x)的最大值和最小值;
(2)设△ABC的内角A,B,C的对应边分别为a,b,c,且c=3,f(C)=2,若向量$\overrightarrow{m}$=(1,sinA)与向量$\overrightarrow{n}$=(2,sinB)共线,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知实数a,b,c,d成等差数列,且曲线y=3x-x3的极大值点坐标为(b,c),则a+d 等于(  )
A.-2B.2C.-3D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设x∈R,向量$\overrightarrow{a}$=(x,1),$\overrightarrow{b}$=(1,-2),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则 ($\overrightarrow{a}$+$\overrightarrow{b}$)•($\overrightarrow{a}$-$\overrightarrow{b}$)的值是(  )
A.xB.1C.0D.-1

查看答案和解析>>

同步练习册答案