精英家教网 > 高中数学 > 题目详情

【题目】已知ab为常数,a0,函数

1)若a=2b=1,求在(0+∞)内的极值;

2a>0b>0,求证:在区间[12]上是增函数;

,且在区间[12]上是增函数,求由所有点形成的平面区域的面积.

【答案】1,(2详见解析,

【解析】

试题分析:(1)求具体函数极值问题分三步,一是求导,二是求根,三是列表,关键在于正确求出导数,即;求根时需结合定义区间进行取舍,如根据定义区间舍去负根;列表时需注意导数在对应区间的符号变化规律,这样才可得出正确结论,因为导数为零的点不一定为极值点,极值点附近导数值必须要变号,(2利用导数证明函数单调性,首先要正确转化,如本题只需证到在区间[12]成立即可,由得只需证到在区间[12],因为对称轴在区间[12]上单调增,因此只需证,而这显然成立,中条件在区间[12]上是增函数不同,它是要求在区间[12]上恒成立,结合二次函数图像可得关于不等关系,再考虑,可得可行域.

试题解析:(1)解:2

,,

(舍去) 4

,是减函数,

,是增函数

所以当,取得极小值为6

2)令

证明:二次函数的图象开口向上,

对称轴8

对一切恒成立.

对一切恒成立.

函数图象是不间断的,

在区间上是增函数. 10

:

在区间上是增函数

恒成立.

恒成立.

12

(*)(**)的条件下,

恒成立.

综上,满足的线性约束条件是14

由所有点形成的平面区域为(如图所示),

其中

的面积为. 16

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆的半径为3,圆心在轴正半轴上,直线与圆相切.

(1)求圆的标准方程;

(2)过点的直线与圆交于不同的两点而且满足求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥SABCD的底面为正方形,SD⊥底面ABCD,则下列结论中,错误的是(   )

A.ACSB

B.BC∥平面SAD

C.SASC与平面SBD所成的角相等

D.异面直线ABSC所成的角和异面直线CDSA所成的角相等

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,网络电商已经悄然进入了广大市民的日常生活,并慢慢改变了人们的消费方式为了更好地服务民众,某电商在其官方APP中设置了用户评价反馈系统,以了解用户对商品状况和优惠活动的评价现从评价系统中随机抽出200条较为详细的评价信息进行统计,商品状况和优惠活动评价的2×2列联表如下:

对优惠活动好评

对优惠活动不满意

合计

对商品状况好评

100

20

120

对商品状况不满意

50

30

80

合计

150

50

200

I)能否在犯错误的概率不超过0.001的前提下认为优惠活动好评与商品状况好评之间有关系?

(Ⅱ)为了回馈用户,公司通过APP向用户随机派送每张面额为0元,1元,2元的三种优惠券用户每次使用APP购物后,都可获得一张优惠券,且购物一次获得1元优惠券,2元优惠券的概率分别是,各次获取优惠券的结果相互独立若某用户一天使用了APP购物两次,记该用户当天获得的优惠券面额之和为X,求随机变量X的分布列和数学期望.

参考数据

PK2k

0.150

0.100

0.050

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

参考公式:K2,其中na+b+c+d

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两地相距1000,货车从甲地匀速行驶到乙地,速度不得超过80,已知货车每小时的运输成本(单位:元)由可变成本和固定成本组成,可变成本是速度平方的倍,固定成本为元.

)将全程运输成本(元)表示为速度)的函数,并指出这个函数的定义域;

)为了使全程运输成本最小,货车应以多大的速度行驶?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公园欲将一块空地规划成如图所示的区域,其中在边长为20米的正方形内种植经红色郁金香,在正方形的剩余部分(即四个直角三角形内)种植黄色郁金香.现要在以为边长的矩形内种植绿色草坪,要求绿色草坪的面积等于黄色郁金香的面积.设米.

1)求之间的函数关系式;

2)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体已知EFGH分别是A1D1B1C1D1DC1C的中点

(1)求证:EF∥平面ABHG

(2)求证:平面ABHG⊥平面CFED

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从甲乙两班各随机抽取10名同学,如图所示的茎叶图记录了这20名同学在2018年高考语文作文题目中的成绩(单位:分).已知语文作文题目满分为60分,“分数分,为及格:分数分,为高分”,若甲乙两班的成绩的平均分都是44分.

(1)求,的值;

(2)若分别从甲乙两班随机各抽取1名成绩为高分的学生,求抽到的学生中,甲班学生成绩高于乙班学生成绩的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数的图象向右平移个单位,在向上平移一个单位,得到g(x)的图象.若g(x1)g(x2)=4,且x1,x2∈[﹣2π,2π],则x1﹣2x2的最大值为(  )

A. B. C. D.

查看答案和解析>>

同步练习册答案