精英家教网 > 高中数学 > 题目详情
14.函数y=|x+1|-|2-x|的最大值是3,最小值是-3.

分析 化简y=|x+1|-|2-x|=$\left\{\begin{array}{l}{-3,x≤-1}\\{2x-1,-1<x<2}\\{3,x≥2}\end{array}\right.$,从而由分段函数求最值.

解答 解:y=|x+1|-|2-x|
=$\left\{\begin{array}{l}{-3,x≤-1}\\{2x-1,-1<x<2}\\{3,x≥2}\end{array}\right.$,
故函数的最大值为3,
最小值为-3;
故答案为:3,-3.

点评 本题考查了绝对值函数与分段函数的应用,同时考查了分类讨论的思想应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知f(x),g(x)都是定义在R上的函数,并满足:f(x)=ax•g(x)(a>0,且a≠1)和f′(x)•g(x)>f(x)•g′(x)(g(x)≠0),且$\frac{f(1)}{g(1)}$+$\frac{f(-1)}{g(-1)}$=$\frac{5}{2}$,当数列{$\frac{f(n)}{g(n)}$}的前n项和大于62时,n的最小值是(  )
A.9B.8C.7D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知点P(x,y)在圆x2+y2-4x-2y+4=0上,则$\frac{y}{x}$的最大值和最小值分别是$\frac{4}{3}$,0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.cosα=a,sinβ=b,α∈(0,$\frac{π}{2}$),β∈(0,π),则cos(α+β)的值的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知等差数列{an}的前n项和为Sn,其中a1+a5=0,a11=16.
(I)在各项均为正的等比数列{bn}中,b1=2且b${\;}_{{a}_{5}}$=4b${\;}_{{a}_{4}}$,求bn
(Ⅱ)若cn=$\frac{1}{{S}_{n}+6n}$,求c1+c2+c3+…+c20的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知P:0<x<2,Q:x(x-3)<0,¬P是¬Q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知A(-1,0),B(3,0),圆C以AB为直径.
(1)求圆C的方程;
(2)求直线l:3x+4y-8=0被圆C截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知过点A(0,1)的直线l,斜率为k,与圆C:(x-2)2+(y-3)2=1相交于M、N两个不同点.
(Ⅰ)求实数k取值范围;
(Ⅱ)若$\overrightarrow{OM}•\overrightarrow{ON}=12$,其中O为坐标原点,求|MN|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设实数x,y满足约束条件$\left\{{\begin{array}{l}{x≤3}\\{x-y+1≥0}\\{2x+y-1≥0}\end{array}}\right.$目标函数z=x+ay取最大值时有无穷多个最优解,则a=0.

查看答案和解析>>

同步练习册答案