【题目】在四棱锥中, 平面,底面为直角梯形, , , ,且为线段上的一动点.
(Ⅰ)若为线段的中点,求证: 平面;
(Ⅱ)当直线与平面所成角小于,求长度的取值范围.
【答案】(Ⅰ)证明见解析(Ⅱ)
【解析】试题分析:(1)取PA的中点F,连结EF,DF,证明四边形EFDC是平行四边形得出CE∥DF,故而CE∥平面PAD;
(2)证明BC⊥平面PAC,可知∠PCE为CE与平面PAC所成的角,利用余弦定理得出∠BPC,利用勾股定理得出PE的最大值即可得出PE的范围.
试题解析:
解:(Ⅰ)取的中点,连接,∵为的中点.
∴,
∴四边形是平行四边形,∴,又平面,
∴平面.
(Ⅱ)方法一:∵,∴,又,∴,∴,又,∴平面
∴与平面所成角就是,∴.
∵,∴,∴.
∵,∴.
方法二:以为坐标原点,以直线为轴,直线为轴,直线为轴,
则,取线段中点,则.
易得,所以为平面的一个法向量.
可求得.
设, , ,
设与平面所成的角,
所以,
化简得,易得,所以.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sinx-cosx+2,记函数f(x)的最小正周期为β,向量a=(2,cosα),b=(1,tan(α+))(0<α<),且a·b=.
(1)求f(x)在区间上的最值;
(2)求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于二项式(x-1)2 013有下列命题:
(1)该二项展开式中非常数项的系数和是1;
(2)该二项展开式中第六项为C2 0136x2 007;
(3)该二项展开式中系数最大的项是第1 007项;
(4)当x=2 014时,(x-1)2 013除以2 014的余数是2 013.
其中正确命题有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知图①②都是表示输出所有立方小于1 000的正整数的程序框图,则图中应分别补充的条件为( )
① ②
A. ①n3≥1 000? ②n3<1 000?
B. ①n3≤1 000? ②n3≥1 000?
C. ①n3<1 000? ②n3≥1 000?
D. ①n3<1 000? ②n3<1 000?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从5名男生和4名女生中选出4人去参加座谈会,问:
(1)如果4人中男生和女生各选2人,有多少种选法?
(2)如果男生中的甲与女生中的乙至少要有1人在内,有多少种选法?
(3)如果4人中必须既有男生又有女生,有多少种选法?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列4个命题:
①“若成等比数列,则”的逆命题;
②“如果,则”的否命题;
③在中,“若”则“”的逆否命题;
④当时,若对恒成立,则的取值范围是.
其中真命题的序号是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校为推行“高效课堂”教学法,某数学老师分别用传统教学和“高效课堂”两种不同的教学方法,在同一年级的甲、乙两个同层次的班进行教学实验,为了解教学效果,期末考试后, 分别从两个班级中各随机抽取20名学生的成绩进行统计,作出的茎叶图如图(记成绩不低于70分者为“成绩优良”).
(1)分别计算甲、乙两班20个样本中,数学成绩前十名的平均分,并大致判断那种教学方法的教学效果更佳;
(2)由以上统计数据填写下面列联表,并判断能否在犯错误的概率不超过0.05的前提下认为“成绩优良与教学方法有关”?
附:
独立性检验临界表:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com