精英家教网 > 高中数学 > 题目详情
f(x)是偶函数,且当x∈[0,+∞)时,f(x)=x-1,则不等式f(x-1)<0的解集是(  )
A、{x|-1<x<0}
B、{x|x<0或1<x<2}
C、{x|1<x<2}
D、{x|0<x<2}
考点:函数奇偶性的性质
专题:函数的性质及应用
分析:根据当x∈[0,+∞)时,f(x)=x-1,即函数f(x)是偶函数我们易将f(x-1)<0转化为一个整式不等式,解整式不等式即可得到答案.
解答: 解:∵当x∈[0,+∞)时,f(x)=x-1
∴当x∈[0,+∞)时,f(x)<0
即x-1<0
解得:[0,1)
又∵函数f(x)是偶函数
∴f(x)<0的解集为(-1,1)
∴f(x-1)<0可化为:
-1<x-1<1
解得:0<x<2,
∴不等式f(x-1)<0的解集是{x|0<x<2},
故选:D
点评:本题考查的知识点是函数奇偶性的应用,及其他不等式的解法,根据已知将f(x-1)<0转化为一个整式不等式是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
b
满足|
a
|=|
b
|=1,|k
a
+
b
|=
3
|
a
-k
b
|(k>0,k∈R).
(1)求
a
b
关于k的解析式f(k);
(2)若
a
b
,求实数k的值;
(3)求向量
a
b
夹角的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为定义在(-1,1)上的奇函数,当x∈(0,1)时,f(x)=
2x
4x+1

(1)求f(x)在(-1,1)上的解析式;
(2)判断f(x)在何区间上单调递减,并给予证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

袋中装有4个大小相同、标号分别为1,2,3,4的小球,依次从袋中取出所有的球,则“标号顺序不符合从小到大或从大到小排列”的概率为(  )
A、
1
12
B、
1
6
C、
5
6
D、
11
12

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,茎叶图记录了甲、乙两组各3名同学在期末考试中的数学成绩,则方差较小的那组同学成绩的方差为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(x-2)(x+a),其中a∈R.
(Ⅰ)若f(x)的图象关于直线x=1对称,求a的值;
(Ⅱ)求f(x)在区间[0,1]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙、丙三位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

当x和y取遍所有实数时,f(x,y)=(x+5-|cosy|)2+(x-|siny|)2≥m恒成立,则m的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)的定义域为[-
1
2
1
2
],则函数f(x2-x-
1
2
)的定义域为
 

查看答案和解析>>

同步练习册答案