精英家教网 > 高中数学 > 题目详情
3.定义在R上的函数f(X)满足f(X)=$\left\{\begin{array}{l}{lo{g}_{2}(1-x)(x≤0)}\\{f(x-1)-f(x-2)(x>0)}\end{array}\right.$,则f(2)的值为1.

分析 利用函数的解析式,求解函数值即可.

解答 解:定义在R上的函数f(X)满足f(X)=$\left\{\begin{array}{l}{lo{g}_{2}(1-x)(x≤0)}\\{f(x-1)-f(x-2)(x>0)}\end{array}\right.$,
则f(2)=f(1)-f(0)=f(0)-f(-1)-f(0)=log2(1+1)=1.
故答案为:1.

点评 本题考查分段函数的应用,函数值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.观察下列单项式:x,4x2,9x3,16x4,25x5
(1)你能说出这列单项式中的第6个与第7个吗?
(2)写出第2015个单项式4060225x2015
(3)写出第n个(n是正整数)单项式n2xn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知a>0,b>0,b=$\frac{1-a}{3}$,若y=3a+27b,则y的最小值2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=a+$\frac{2}{{{2^x}+1}}$(a∈R)
(Ⅰ)若函数f(x)为奇函数,求实数a的值;
(Ⅱ)用定义法判断函数f(x)的单调性;
(Ⅲ)若当x∈[-1,5]时,f(x)≤0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设全集为R,集合A={x|x2-9x+18≥0},B={x|y=$\frac{1}{\sqrt{x+2}}$+lg(9-x).
(1)求A∪B,(∁RA)∩B;
(2)已知C={x|a<x<a+1}若C⊆B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知A,B,是直二面角α-l-β的棱上两点,线段AC?α,线段BD?β,且AC⊥l,BD⊥l,AC=12,AB=4,BD=3,求线段CD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ex-2ax-1.
(1)讨论函数f(x)的极值;
(2)若函数f(x)在[0,2]上单调,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设不等式组$\left\{\begin{array}{l}{x+y≤2}\\{2x-y≤1}\\{x≥0,y≥0}\end{array}\right.$表示的平面区域为D,向区域D内任投一点P,则点P落在圆x2+y2=2内的概率为$\frac{5}{π+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若f(x+1)=x2+2x+2,则f(2)=5.

查看答案和解析>>

同步练习册答案