分析 求出弦心距为3,设直线方程为y=k(x+2),即kx-y+2k=0,可得$\frac{|6k|}{\sqrt{{k}^{2}+1}}$=3,k=±$\frac{\sqrt{3}}{3}$,即可求出直线l的倾斜角的取值集合.
解答 解:圆C:$\left\{\begin{array}{l}{x=4+2\sqrt{3}cosθ}\\{y=2\sqrt{3}sinθ}\end{array}\right.$(θ为参数)的圆心为(4,0),半径为2$\sqrt{3}$,
∵过点(-2,0)的直线l被圆C:$\left\{\begin{array}{l}{x=4+2\sqrt{3}cosθ}\\{y=2\sqrt{3}sinθ}\end{array}\right.$(θ为参数)所截得的线段的长等于2$\sqrt{3}$,
∴弦心距为3,
设直线方程为y=k(x+2),即kx-y+2k=0,
∴$\frac{|6k|}{\sqrt{{k}^{2}+1}}$=3,∴k=±$\frac{\sqrt{3}}{3}$,
∴直线l的倾斜角的取值集合为{$\frac{π}{6}$,$\frac{5π}{6}$}.
故答案为{$\frac{π}{6}$,$\frac{5π}{6}$}.
点评 此题考查了直线与圆的位置关系,直线的倾斜角,以及参数方程化为普通方程,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | lnx≥x+1 | B. | lnx≤1-x | C. | lnx≥x-1 | D. | lnx≤x-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com