精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥中, 为等边三角形,且平面平面.

(Ⅰ)证明:

(Ⅱ)若棱锥的体积为,求该四棱锥的侧面积.

【答案】(Ⅰ)证明见解析;(Ⅱ) .

【解析】试题分析】(I)的中点为,连接.利用等腰三角形的性质和矩形的性质可证得,由此证得平面,故,故.(II) 可知是棱锥的高,利用体积公式求得,利用勾股定理和等腰三角形的性质求得的值,进而求得面积.

试题解析】

证明:(Ⅰ)取的中点为,连接

为等边三角形,∴.

底面中,可得四边形为矩形,∴

,∴平面

平面,∴.

,所以.

(Ⅱ)由面

平面,所以为棱锥的高,

,知

.

由(Ⅰ)知,∴.

.

,可知平面,∴

因此.

的中点,连结,则

.

所以棱锥的侧面积为.

型】解答
束】
20

【题目】已知圆经过椭圆 的两个焦点和两个顶点,点 是椭圆上的两点,它们在轴两侧,且的平分线在轴上, .

(Ⅰ)求椭圆的方程;

(Ⅱ)证明:直线过定点.

【答案】(Ⅰ).(Ⅱ)直线过定点.

【解析】试题分析】(I)根据圆的半径和已知 ,,由此求得椭圆方程.(II)设出直线的方程,联立直线方程与椭圆方程,写出韦达定理,写出的斜率并相加,由此求得直线过定点.

试题解析】

(Ⅰ)圆轴交点即为椭圆的焦点,圆轴交点即为椭圆的上下两顶点,所以 .从而

因此椭圆的方程为: .

(Ⅱ)设直线的方程为.

,消去.

,则 .

直线的斜率

直线的斜率 .

.

的平分线在轴上,得.又因为,所以

所以.

因此,直线过定点.

[点睛]本小题主要考查椭圆方程的求解,考查圆与椭圆的位置关系,考查直线与圆锥曲线位置关系. 涉及直线与椭圆的基本题型有:(1)位置关系的判断.(2)弦长、弦中点问题.(3)轨迹问题.(4)定值、最值及参数范围问题.(5)存在性问题.常用思想方法和技巧有:(1)设而不求.(2)坐标法.(3)根与系数关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一同学在电脑中打出若干个圈:○●○○●○○○●○○○○●○○○○○●若将此若干个圈依此规律继续下去,得到一系列的圈,那么在前2012个圈中的●的个数是 ( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年6月14日,第二十一届世界杯足球赛将在俄罗斯拉开帷幕.为了了解喜爱足球运动是否与性别有关,某体育台随机抽取100名观众进行统计,得到如下列联表.

(1)将列联表补充完整,并判断能否在犯错误的概率不超过0.001的前提下认为喜爱足球运动与性别有关?

(2)在不喜爱足球运动的观众中,按性别分别用分层抽样的方式抽取6人,再从这6人中随机抽取2人参加一台访谈节目,求这2人至少有一位男性的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD内接于⊙O,过点A作⊙O的切钱EP交CB 的延长线于P,己知∠PAB=25°.

(1)若BC是⊙O的直径,求∠D的大小;
(2)若∠DAE=25°,求证:DA2=DCBP.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】把三盆不同的兰花和4盆不同的玫瑰花摆放在右图图案中的1,2,3,4,5,6,7所示的位置上,其中三盆兰花不能放在一条直线上,则不同的摆放方法为(

A.2680种
B.4320种
C.4920种
D.5140种

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有甲乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表.

优秀

非优秀

总计

甲班

10

乙班

30

总计

105

已知在全部105人中随机抽取1人为优秀的概率为.

(1)请完成上面的列联表;(把列联表自己画到答题卡上)

(2)根据列联表的数据,若按95%的可靠性要求,能否认为成绩与班级有关系”?

参考公式:

P(K2k0)

0.10

0.05

0.025

0.010

k0

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用红、黄、蓝、白、黑五种颜色涂在如图所示的四个区域内,每个区域涂一种颜色,相邻两个区域涂不同的颜色,五种颜色可以反复使用,共有___________种不同的涂色方法?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=x2﹣a|x﹣1|+b(a>0,b>﹣1)
(1)若b=0,a>2,求f(x)在区间[0,2]内的最小值m(a);
(2)若f(x)在区间[0,2]内不同的零点恰有两个,且落在区间[0,1),(1,2]内各一个,求a﹣b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】的展开式中,第二、三、四项的二项式系数成等差数列

1的值;

2此展开式中是否有常数项,为什么?

查看答案和解析>>

同步练习册答案