精英家教网 > 高中数学 > 题目详情

【题目】已知平面四边形MNPQ中,MNMP=1,MPMNPQQM

Ⅰ)若PQ,求NQ的值;

Ⅱ)若∠MQN=30°,求sinQMP的值.

【答案】(Ⅰ)(Ⅱ).

【解析】

(Ⅰ)由题意可得∠QMN=150,根据余弦定即可求出,

(Ⅱ)∠QMPθ,由题意可得QM,∠MNQ,在△MNQ中,由正弦定理结合三角恒等变换整理可得tanθ,再根据同角三角函数的基本关系,即可求出

解:(Ⅰ)如图:∵MNMP=1,MPMNPQQM

PQ

∴sin∠QMP

∴∠QMP=60°,

QMPM

∴∠QMN=150°,

由余弦定理可得NQ2QM2+MN2﹣2MNQMcos∠QMN+3﹣2×××(﹣)=

NQ

(2):∵MNMP=1,MPMNPQQM

设∠QMPθ,由题意可得QM=cosθ,∠MNQ=60°﹣θ

在△MNQ中,由正弦定理可得

=2

整理可得tanθ

∵sin2θ+cos2θ=1,

θ

sin∠QMP

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图在平行四边形中,,以为折痕将△折起,使点到达点的位置,且

1)证明:平面平面

2为线段上一点,为线段上一点,且,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3-3x2-9x+2.

1) 求函数的单调区间;

2) 求函数在区间[-22]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=mx3+x﹣sinx(mR).

1)当m=0时,(i)求y=f(x)在(f))处的切线方程;

ii)证明:fx)<ex

2)当x≥0时,函数fx)单调递减,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在底面是菱形的四棱锥中,.

1)证明:平面

2)点在棱.

①如图1,若点是线段的中点,证明:平面

②如图2,若,在棱上是否存在点,使得平面?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C过点A(﹣1,),B),F为椭圆C的左焦点.

Ⅰ)求椭圆C的标准方程;

Ⅱ)若点B为直线l1x+y+2=0与直线l2:2xy+4=0的交点,过点B的直线1与椭圆C交于DE两点,求DEF面积的最大值,以及此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,直线l的极坐标方程为ρcosθ=4,曲线C的极坐标方程为ρ=2cosθ+2sinθ,以极点为坐标原点O,极轴为x轴的正半轴建立直角坐标系,射线l':y=kx(x≥0,0<k<1)与曲线C交于OM两点.

Ⅰ)写出直线l的直角坐标方程以及曲线C的参数方程;

Ⅱ)若射线l与直线l交于点N,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知若过轴上的一点可以作一直线与相交于两点且满足的取值范围为_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了引导居民合理用电,国家决定实行合理的阶梯电价,居民用电原则上以住宅为单位(一套住宅为一户).

某市随机抽取10户同一个月的用电情况,得到统计表如下:

(1)若规定第一阶梯电价每度0.5元,第二阶梯超出第一阶梯的部分每度0.6元,第三阶梯超出第二阶梯每度0.8元,试计算居民用电户用电410度时应交电费多少元?

(2)现要在这10户家庭中任意选取3户,求取到第二阶梯电量的户数的分布列与期望;

(3)以表中抽到的10户作为样本估计全市居民用电,现从全市中依次抽取10户,若抽到户用电量为第一阶梯的可能性最大,求的值.

查看答案和解析>>

同步练习册答案