【题目】设函数y= 的定义域为A,函数y=ln(1﹣x)的定义域为B,则A∩B=( )
A.(1,2)
B.(1,2]
C.(﹣2,1)
D.[﹣2,1)
【答案】D
【解析】解:由4﹣x2≥0,解得:﹣2≤x≤2,则函数y= 的定义域[﹣2,2],
由对数函数的定义域可知:1﹣x>0,解得:x<1,则函数y=ln(1﹣x)的定义域(﹣∞,1),
则A∩B=[﹣2,1),
故选D.
【考点精析】解答此题的关键在于理解集合的交集运算的相关知识,掌握交集的性质:(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,则AB,反之也成立,以及对函数的定义域及其求法的理解,了解求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零.
科目:高中数学 来源: 题型:
【题目】设f(x)=xlnx﹣ax2+(2a﹣1)x,a∈R.
(1)令g(x)=f′(x),求g(x)的单调区间;
(2)已知f(x)在x=1处取得极大值,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数y=f(2x+1)定义域是[﹣1,0],则y=f(x+1)的定义域是( )
A.[﹣1,1]
B.[0,2]
C.[﹣2,0]
D.[﹣2,2]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】直线l:y=kx+1与圆O:x2+y2=1相交于A,B 两点,则“k=1”是“△OAB的面积为 ”的( )
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分又不必要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题p:x∈R,x2+1>m;命题q:指数函数f(x)=(3﹣m)x是增函数.若“p∧q”为假命题且“p∨q”为真命题,则实数m的取值范围为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】观察下列各等式(i为虚数单位):
(cos 1+isin 1)(cos 2+isin 2)=cos 3+isin 3;
(cos 3+isin 3)(cos 5+isin 5)=cos 8+isin 8;
(cos 4+isin 4)(cos 7+isin 7)=cos 11+isin 11;
(cos 6+isin 6)(cos 6+isin 6)=cos 12+isin 12.
记f(x)=cos x+isin x.
猜想出一个用f (x)表示的反映一般规律的等式,并证明其正确性;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数exf(x)(e≈2.71828…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质.下列函数中所有具有M性质的函数的序号为 .
①f(x)=2﹣x②f(x)=3﹣x③f(x)=x3④f(x)=x2+2.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设等差数列{an}的前n项和为Sn , ,若 ,且S11=143,数列{bn}的前n项和为Tn , 且满足 .
(1)求数列{an}的通项公式及数列 的前n项和Mn
(2)是否存在非零实数λ,使得数列{bn}为等比数列?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知直三棱柱ABC﹣A1B1C1的底面是边长为4的正三角形,B,E,F分别是AA1 , CC1的中点,且BE⊥B1F.
(1)求证:B1F⊥EC1;
(2)求二面角C1﹣BE﹣C的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com