精英家教网 > 高中数学 > 题目详情
16.已知sinθ-cosθ=$-\frac{1}{5}$,且-π<θ<0,则tanθ的值为(  )
A.±$\frac{3}{4}$B.$\frac{3}{4}$或$\frac{4}{3}$C.$\frac{4}{3}$D.$\frac{3}{4}$

分析 由已知得1-sin2θ=$\frac{1}{25}$,从而sin2θ=2sinθcosθ=$\frac{24}{25}$,由此求出sinθ=-$\frac{4}{5}$,cosθ=-$\frac{3}{5}$.从而能求出tanθ.

解答 解:∵sinθ-cosθ=$-\frac{1}{5}$,且-π<θ<0,
sinθ-cosθ=-$\frac{1}{5}$,①
∴1-sin2θ=$\frac{1}{25}$,∴sin2θ=2sinθcosθ=$\frac{24}{25}$,②
又-π<θ<0,∴sinθ<0,由2sinθcosθ=$\frac{24}{25}$,得cosθ<0,
由①②得:sinθ=-$\frac{4}{5}$,cosθ=-$\frac{3}{5}$.
∴tanθ=$\frac{sinθ}{cosθ}$=$\frac{-\frac{4}{5}}{-\frac{3}{5}}$=$\frac{4}{3}$.
故选:C.

点评 本题考查正切值的求法,是基础题,解题时要认真审题,注意三角函数的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{(sinx-cosx)sin2x}{sinx}$,求:
(1)f($\frac{π}{4}$)的值;
(2)函数f(x)的最小正周期和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知四棱锥P-ABCD如图(1),它的三视图如图(2)所示,其中PA⊥平面ABCD,△PBC为正三角形.

(1)求证:AC⊥平面PAB;
(2)求点A到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设△ABC内角A,B,C的对边分别是a,b,c.若△ABC的面积为2,AB边上的中线长为$\sqrt{2}$,且b=acosC+csinA,则△ABC中最长边的长为4或2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.集合A={x|0<x2-x-2≤10},集合$B=\{x|\frac{1}{x+2}>0\}$,求A∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}的前n项和为Sn,Sn=2an+n-3,n∈N*
(1)证明数列{an-1}为等比数列,并求{an}的通项公式;
(2)求数列{nan}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.用一个平行于圆锥底面的平面截这个圆锥,截得圆台的上、下底面的面积之比为1:16,截去的圆锥的母线长是3cm,求圆台的母线长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设f(x)=$\left\{\begin{array}{l}{2,x∈(-∞,1]}\\{lo{g}_{81}x,x∈(1,+∞)}\end{array}\right.$,则满足$f(x)=\frac{1}{4}$的x的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=log2(1-x)+log2(x+3),求函数f(x)的定义域和值域.

查看答案和解析>>

同步练习册答案