精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)若,求曲线在点处的切线方程;

(2)若关于的不等式上恒成立,求实数的取值范围.

【答案】(1)(2).

【解析】

1)根据解析式求得切点,利用导数求得切线斜率,从而可求得切线方程;(2)将问题转化为上恒成立;当单调递减时满足题意,即恒成立即可,从而可求得;当时,单调递增,不符合题意;当时,可证得上单调递增,不满足题意;综合三种情况可得.

(1)当时,,则

,又

故所求切线方程为,即

(2)由题意得,上恒成立

设函数,则

故对任意,不等式恒成立

①当,即恒成立时,函数上单调递减

,则

,即,解得,符合题意;

②当时,恒成立,此时函数上单调递增

则不等式对任意恒成立,不符合题意;

③当时,设,则

,解得

时,,此时单调递增

故当时,函数单调递增

时,成立,不符合题意.

综上所述,实数的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】我国古代著名的周髀算经中提到:凡八节二十四气,气损益九寸九分六分分之一;冬至晷长一丈三尺五寸,夏至晷长一尺六寸意思是:一年有二十四个节气,每相邻两个节气之间的日影长度差为分;且“冬至”时日影长度最大,为1350分;“夏至”时日影长度最小,为160分则“立春”时日影长度为  

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.

(1)若a=-2,求B∩A,B∩(UA);(2)A∪B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程是为参数),把曲线横坐标缩短为原来的,纵坐标缩短为原来的一半,得到曲线,直线的普通方程是,以坐标原点为极点,轴正半轴为极轴建立极坐标系;

(1)求直线的极坐标方程和曲线的普通方程;

(2)记射线交于点,与交于点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

(1)求直线的普通方程和曲线的直角坐标方程;

(2)若直线与曲线相交于两点,设点,已知,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某超市开展年终大回馈,设计了两种答题游戏方案:

方案一:顾客先回答一道多选题,从第二道开始都回答单选题;

方案二:顾客全部选择单选题进行回答;

其中每道单选题答对得2分,每道多选题答对得3分,无论单选题还是多选题答错都得0分,每名参与的顾客至多答题3道.在答题过程中得到3分或3分以上立刻停止答题,并获得超市回馈的赠品.

为了调查顾客对方案的选择情况,研究人员调查了参与游戏的500名顾客,所得结果如下表所示:

男性

女性

选择方案一

150

80

选择方案二

150

120

(1)是否有95%的把握认为方案的选择与性别有关?

(2)小明回答每道单选题的正确率为0.8,多选题的正确率为0.75,.

①若小明选择方案一,记小明的得分为,求的分布列及期望;

②如果你是小明,你觉得选择哪种方案更有可能获得赠品,请通过计算说明理由.

附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了16月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.

日期

110

210

310

410

510

610

昼夜温差(℃)

10

11

13

12

8

6

就诊人数(个)

22

25

29

26

16

12

1)若选取的是1月与6月的两组数据,请根据25月份的数据,求出关于的线性回归方程

2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?

(参考数据

(参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为菱形,,且.

(1)求证:平面平面

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】条形图给出的是2017年全年及2018年全年全国居民人均可支配收入的平均数与中位数,饼图给出的是2018年全年全国居民人均消费及其构成,现有如下说法:

①2018年全年全国居民人均可支配收入的平均数的增长率低于2017年;

②2018年全年全国居民人均可支配收入的中位数约是平均数的

③2018年全年全国居民衣(衣着)食(食品烟酒)住(居住)行(交通通信)的支出超过人均消费的.

则上述说法中,正确的个数是( )

A. 3B. 2C. 1D. 0

查看答案和解析>>

同步练习册答案