精英家教网 > 高中数学 > 题目详情
8.设抛物线y2=4x的焦点为F,则准线与x轴交于点C,经过点F的直线l交抛物线于A,B两点,若点B在以A,C为直径的圆上,则|AF|-|BF|=4.

分析 通过设A(x1,y1)、B(x2,y2),设直线l方程为x=my+1并与抛物线方程联立,利用韦达定理可知y1+y2=4m、y1y2=-4,通过点B在以A,C为直径的圆上可知$\overrightarrow{BC}$•$\overrightarrow{FB}$=0,化简计算可知${{y}_{2}}^{2}$=4$\sqrt{5}$-8,进而可知x2=$\sqrt{5}$-2、x1=$\sqrt{5}$+2,计算即得结论.

解答 解:依题意,F(1,0),C(-1,0),且直线l的斜率不为0,
设直线l方程为:x=my+1,并与抛物线方程联立,
消去x,整理得:y2-4my-4=0,
设A(x1,y1),B(x2,y2),则y1+y2=4m,y1y2=-4,
∵点B在以A,C为直径的圆上,
∴$\overrightarrow{BC}$•$\overrightarrow{BA}$=0,即$\overrightarrow{BC}$•$\overrightarrow{FB}$=0,
∴${{x}_{2}}^{2}$-1+${{y}_{2}}^{2}$=0,即$\frac{1}{4}$${{y}_{2}}^{4}$+${{y}_{2}}^{2}$-1=0,
解得:${{y}_{2}}^{2}$=4$\sqrt{5}$-8或${{y}_{2}}^{2}$=-4$\sqrt{5}$-8(舍),
∴x2=$\frac{1}{4}$${{y}_{2}}^{2}$=$\sqrt{5}$-2,
又∵y1y2=-4,
∴x1=$\frac{1}{4}$${{y}_{1}}^{2}$=$\frac{1}{4}$•$\frac{16}{{{y}_{2}}^{2}}$=$\sqrt{5}$+2,
∴|AF|-|BF|=(x1+1)-(x2+1)
=x1-x2
=($\sqrt{5}$+2)-($\sqrt{5}$-2)
=4,
故答案为:4.

点评 本题是一道直线与圆锥曲线的综合题,考查运算求解能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知数列{an}的通项公式为an=log3$\frac{n}{n+1}$(n∈N*),设其前n项和为Sn,则使Sn<-4成立的最小自然数n等于81.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.平面上有A(2,-1),B(1,4),D(4,-3)三点,点C在直线AB上,且$\overrightarrow{AC}$=$\frac{1}{2}$$\overrightarrow{BC}$,连接DC延长至E,使|$\overrightarrow{CE}$|=$\frac{1}{4}$|$\overrightarrow{ED}$|,则点E的坐标为($\frac{8}{3}$,-7).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.给出如图所示的流程图,若要使输入的x值与输出的y值相等,则这样的x值的个数是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知lg2y+(2x+1+2-x+1)lgy+(22x+1+2-2x+1)=0,求x、y的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.为使$\sqrt{cosx}$+lg(4-x2)有意义,x的取值范围是[-$\frac{π}{2}$,$\frac{π}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知i为虚数单位,复数z=$\frac{a+2i}{1-i}$为纯虚数,则复数|z-1|=(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{1}{2}$C.$\sqrt{5}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知命题p:27是2的倍数,q:27是3的倍数,则在p,¬q,p∧q,p∨q这四个命题中,真命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)已知x+x-1=3,求x2+x-2的值;
(2)计算lg$\sqrt{5}$+lg$\sqrt{20}$的值.

查看答案和解析>>

同步练习册答案