【题目】在年初的时候,国家政府工作报告明确提出, 年要坚决打好蓝天保卫战,加快解决燃煤污染问题,全面实施散煤综合治理.实施煤改电工程后,某县城的近六个月的月用煤量逐渐减少, 月至月的用煤量如下表所示:
月份 | ||||||
用煤量(千吨) |
(1)由于某些原因, 中一个数据丢失,但根据至月份的数据得出样本平均值是,求出丢失的数据;
(2)请根据至月份的数据,求出关于的线性回归方程;
(3)现在用(2)中得到的线性回归方程中得到的估计数据与月月的实际数据的误差来判断该地区的改造项目是否达到预期,若误差均不超过,则认为该地区的改造已经达到预期,否则认为改造未达预期,请判断该地区的煤改电项目是否达预期?
(参考公式:线性回归方程,其中 )
科目:高中数学 来源: 题型:
【题目】已知关于x的二次函数f(x)=ax2﹣4bx+1.设集合P={1,2,3}和Q={﹣1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率
(1)已知关于x的二次函数f(x)=ax2﹣4bx+1.设集合P={1,2,3}和Q={﹣1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率;
(2)在区间[1,5]和[2,4]上分别取一个数,记为a,b,求方程 + =1表示焦点在x轴上且离心率小于 的椭圆的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某车间的一台机床生产出一批零件,现从中抽取8件,将其编为, ,…, ,测量其长度(单位: ),得到下表中数据:
编号 | ||||||||
长度 | 1.49 | 1.46 | 1.51 | 1.51 | 1.53 | 1.51 | 1.47 | 1.51 |
其中长度在区间内的零件为一等品.
(1)从上述8个零件中,随机抽取一个,求这个零件为一等品的概率;
(2)从一等品零件中,随机抽取2个.
①用零件的编号列出所有可能的抽取结果;
②求这2个零件长度相等的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四个函数中,以π为最小正周期,且在区间 上为减函数的是( )
A.y=2|sinx|
B.y=cosx
C.y=sin2x
D.y=|cosx|
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sin2x﹣ sinxcosx+ ,g(x)=mcos(x+ )﹣m+2
(1)若对任意的x1 , x2∈[0,π],均有f(x1)≥g(x2),求m的取值范围;
(2)若对任意的x∈[0,π],均有f(x)≥g(x),求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设a,b∈R,c∈[0,2π),若对于任意实数x都有2sin(3x﹣ )=asin(bx+c),则满足条件的有序实数组(a,b,c)的组数为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某研究所计划利用“神十”宇宙飞船进行新产品搭载实验,计划搭载若干件新产品A、B,该所要根据该产品的研制成本、产品重量、搭载实验费用和预计产生的收益来决定具体搭载安排,有关数据如表:
每件产品A | 每件产品B | ||
研制成本、搭载 | 20 | 30 | 计划最大资金额 |
产品重量(千克) | 10 | 5 | 最大搭载重量110千克 |
预计收益(万元) | 80 | 60 |
分别用x,y表示搭载新产品A,B的件数.总收益用Z表示
(Ⅰ)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;
(Ⅱ)问分别搭载新产品A、B各多少件,才能使总预计收益达到最大?并求出此最大收益.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在长方体ABCD﹣A1B1C1D1中,A1C1与B1D1的交点为O1 , AC与BD的交点为O.
(1)求证:直线OO1∥平面BCC1B1;
(2)若AB=BC,求证:直线BO⊥平面ACC1A1 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com