精英家教网 > 高中数学 > 题目详情
16.用“秦九韶算法”计算多项式f(x)=4x5-3x4+4x3-2x2-2x+3的值,当x=3时,V3=91.

分析 先将多项式改写成如下形式:f(x)=((((4x-3)x+4)x-2)x-2)x+3,将x=3代入并依次计算v0,v1,v2,v3,的值,即可得到答案.

解答 解:多项式f(x)=4x5-3x4+4x3-2x2-2x+3
=((((4x-3)x+4)x-2)x-2)x+3,
当x=3时,
v0=4,
v1=9,
v2=31,
v3=91,
故答案为:91

点评 本题考查的知识点秦九韶算法,其中熟练掌握秦九韶算法的运算法则,是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.高为1的四棱锥S-ABCD的底面是边长为2的正方形,点S、A、B、C、D均在半径为$\frac{\sqrt{17}}{2}$的同一球面上,在底面ABCD的中心与顶点S之间的距离为(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{5}}{2}$C.$\sqrt{5}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知$\vec a=(1,-1)$,$\vec b=(-1,2)$,则$|{2\vec a-\vec b}$|=(  )
A.5B.0C.1D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.集合A={x|9x+p•3x+q=0,x∈R},B={x|q•9x+p•3x+1=0,x∈R},且实数pq≠0
(1)证明:若x0∈A,则-x0∈B;
(2)是否存在实数p,q满足A∩B≠∅且A∩CRB={1}?若存在,求出p,q的值,不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设函数$f(x)=\left\{\begin{array}{l}1-3x,x<1\\-{2^x},x≥1\end{array}\right.$,则f(f(-1))的值是-16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.要从高一(5)班50名学生中随机抽出5人参加一项活动,假设从0开始编号,用随机数表法进行抽样,从下表的第一个数1开始向右读数,则第5人的号码是(  )
随机数表:16 22 77 94 39  49 54 43 54 82  17 37 93 23 78  87 35 20 96 43.
A.49B.54C.44D.43

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知$α∈({0,\frac{π}{2}})∪({\frac{π}{2},π})$,且sinα,sin2α,sin4α成等比数列,则α的值为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=Asin(ωx+ϕ)(A>0,ω>0,0<ϕ<π)的图象如图所示,为了得到g(x)=Asinωx的图象,可将f(x)的图象(  )
A.向右平移$\frac{π}{12}$个单位B.向右平移$\frac{π}{6}$个单位
C.向左平移$\frac{π}{12}$个单位D.向左平移$\frac{π}{6}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知椭圆的对称轴是坐标轴,离心率e=$\frac{2}{3}$,长轴长为6,则椭圆的方程(  )
A.$\frac{{x}^{2}}{36}+\frac{{y}^{2}}{20}=1$B.$\frac{{x}^{2}}{36}+\frac{{y}^{2}}{20}=1或\frac{{x}^{2}}{20}+\frac{{y}^{2}}{36}=1$
C.$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{5}=1$D.$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{5}=1或\frac{{x}^{2}}{5}+\frac{{y}^{2}}{9}=1$

查看答案和解析>>

同步练习册答案