精英家教网 > 高中数学 > 题目详情
已知两个不同的平面,能判定//的条件是(    )
A.分别平行于直线B.分别垂直于直线
C.分别垂直于平面D.内有两条直线分别平行于
B

试题分析:根据题意,对于A,由于两平面相交的时候,也可以找到一条直线平行于两个平面,故错误。
对于B,由于垂直于同一直线的两个平面式平行平面,则成立
对于C,由于垂直于同一个平面的两个平面可能相交,错误
对于D,由于只有内有两条相交直线分别平行于时满足题意,故错误。选B.
点评:本题考查学生严密的思维能力和空间想象能力.属于基础题
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在四边形ABCD中,AC平分∠DAB,∠ABC=600,AC=7,AD=6,S△ADC=
求AB的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是三个不重合的平面,l是直线,给出下列命题:
①若,则;  ②若
③若l上存在两点到的距离相等,则; ④若
其中正确的命题是(    )
A.①②B.②③C.②④D.③④

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图:

(1)求的大小;
(2)当时,判断的形状,并求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面ABCD是正方形,侧棱底面ABCDEPC的中点,作PB于点F

(I) 证明: PA∥平面EDB
(II) 证明:PB⊥平面EFD

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
在四棱柱中,底面是直角梯形,AB∥CD,∠ABC=,AB=PB=PC=BC=2CD=2,平面PBC⊥平面ABCD

(1)求证:AB⊥平面PBC
(2)求三棱锥C-ADP的体积
(3)在棱PB上是否存在点M使CM∥平面PAD?
若存在,求的值。若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)如图,在长方体中,已知上下两底面为正方形,且边长均为1;侧棱,为中点,中点,上一个动点.

(Ⅰ)确定点的位置,使得
(Ⅱ)当时,求二面角的平
面角余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如果平面的一条斜线和它在这个平面上的射影的方向向量分别是那么这条斜线与平面所成的角是 ____________

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,四棱锥的底面为菱形,平面, E、F分别为的中点,

(Ⅰ)求证:平面平面
(Ⅱ)求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

同步练习册答案