精英家教网 > 高中数学 > 题目详情
设f(x)=|lgx|,a,b为实数,且0<a<b.
(1)求方程f(x)=1的解;
(2)若a,b满足f(a)=f(b)=2f(
a+b
2
)
,求证:①a•b=1;②
a+b
2
>1

(3)在(2)的条件下,求证:由关系式f(b)=2f(
a+b
2
)
所得到的关于b的方程h(b)=0,存在b0∈(3,4),使h(b0)=0.
分析:(1)由f(x)=1得,lgx=±1,由此能求出方程f(x)=1的解.
(2)结合函数图象,由f(a)=f(b),知a∈(0,1),b∈(1,+∞),从而ab=-1.由
a+b
2
=
1
b
+b
2
,构造函数?(b)=
1
b
+b(b∈(1,+∞)
能够证明
a+b
2
>1

(3)由b=(
a+b
2
2,得4b=a2+b2+2ab,令g(b)=
1
b2
+b2+2-4b
,能推导出方程
1
b2
+b2+2-4b=0
存在3<b<4的根.
解答:(1)解:由f(x)=1得,lgx=±1,
所以x=10,或x=
1
10
.…(3分)
(2)证明:结合函数图象,由f(a)=f(b),
知a∈(0,1),b∈(1,+∞),…(4分)
从而-lga=lgb,从而ab=-1.…(5分)
a+b
2
=
1
b
+b
2
,…(6分)
?(b)=
1
b
+b(b∈(1,+∞)
.…(7分)
任取1<b1<b2
∵∅(b1)-∅(b2)=(b1-b2)(1-
1
b1b2
)<0,
∴∅(b1)<∅(b2),
∴∅(b)在(1,+∞)上为增函数.
∴∅(b)>∅(1)=2.…(9分)
所以
a+b
2
>1.…(10分)
(3)解:由b=(
a+b
2
2
得4b=a2+b2+2ab,…(11分)
1
b2
+b2+2-4b=0

令g(b)=
1
b2
+b2+2-4b
,…(12分)
因为g(3)<0,g(4)>0,根据零点存在性定理知,…(13分)
函数g(b)在(3,4)内一定存在零点,
即方程
1
b2
+b2+2-4b=0
存在3<b<4的根.…(14分)
点评:本题考查方程的解的求法,考查不等式的证明,考查零眯存在定理的应用.解题时要认真审题,仔细解答,注意等价转化思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

6、设f(x)=|lgx|,若0<a<b<c且f(a)>f(c)>f(b),则下列关系①ac+1>a+c,②ac+1<a+c,③ac+1=a+c,④ac<1中正确的是
②④

查看答案和解析>>

科目:高中数学 来源: 题型:

14、某同学在借助计算器求“方程lgx=2-x的近似解(精确到0.1)”时,设f(x)=lgx+x-2,算得f(1)<0,f(2)>0;在以下过程中,他用“二分法”又取了4个x的值,计算了其函数值的正负,并得出判断:方程的近似解是x≈1.8.那么他再取的x的4个值分别依次是
1.5,1.75,1.875,1.8125

查看答案和解析>>

科目:高中数学 来源: 题型:

某同学在借助计算器求“方程lgx=2-x的近似解(精确到0.1)”时,设f(x)=lgx+x-2,算得f(1)<0,f(2)>0;在以下过程中,他用“二分法”又取了x的4个不同值,计算了其函数值的正负,并得出判断:方程的近似解是x≈1.8.那么他又取的x的4个不同值中的前两个值依次为
1.5、1.75
1.5、1.75

查看答案和解析>>

科目:高中数学 来源: 题型:

某同学用“二分法求方程lgx=2-x的近似解”时,设f(x)=lgx+x-2,算得f(1)<0,f(2)>0,则下一个有零点的区间是
3
2
,2)
3
2
,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=|lgx|,若a≠b,且f(a)=f(b),则a•b=
1
1

查看答案和解析>>

同步练习册答案