精英家教网 > 高中数学 > 题目详情

在如图所示的几何体中,四边形ABCD是正方形,MA⊥平面ABCD,PD∥MA,E、G、F分别为MB、PB、PC的中点,且AD=PD=2MA.

(1)求证:平面EFG⊥平面PDC;
(2)求三棱锥P-MAB与四棱锥P-ABCD的体积之比.

(1)证明略    (2) VP-MAB∶VP-ABCD=1∶4.

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知梯形ABCD中,AD∥BC,∠ABC ="∠BAD" =,AB=BC=2AD=4,
E、F分别是AB、CD上的点,且EF∥BC.设AE =,G是BC的中点.
沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF (如图).

(1)当=2时,求证:BD⊥EG ;
(2)若以F、B、C、D为顶点的三棱锥的体积记为,求的最大值;
(3)当取得最大值时,求二面角D-BF-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知三棱柱的侧棱与底面垂直,分别是的中点,点在直线上,且
(Ⅰ)证明:无论取何值,总有
(Ⅱ)当取何值时,直线与平面所成的角最大?并求该角取最大值时的正切值;
(Ⅲ)是否存在点,使得平面与平面所成的二面角为30º,若存在,试确定点的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)如图所示,在四棱锥中,平面
的中点.
(1)证明:平面
(2)若,求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

四棱锥中,侧面⊥底面,底面是边长为的正方形,又分别是的中点.
(Ⅰ)求证:
(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分)
如图,四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB=BC=2,E为PA的中点,过E作平行于底面的平面EFGH,分别与另外三条侧棱相交于点F、G、H. 已知底面ABCD为直角梯形,AD∥BC,AB⊥AD,∠BCD=135°.
(1)求异面直线AF与BG所成的角的大小;
(2)求平面APB与平面CPD所成的锐二面角的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)
已知四棱台的三视图如图所示,

(1)求证:平面;
(2)求证:平面平面;
(3)求此四棱台的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(满分12分)
如图,在正方体中,E、F、G分别为的中点,O为的交点,
(1)证明:
(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

正三棱锥底面边长为6,高为,求这个正三棱锥的侧面积

查看答案和解析>>

同步练习册答案