分析 (1)利用同角三角函数的基本关系,求得要求式子的值.
(2)利用同角三角函数的基本关系,求得要求式子的值.
解答 解:(1)∵tanα=3,∴cosα≠0,
∴$\frac{4sinα-2cosα}{5cosα+3sinα}$=$\frac{{(4sinα-2cosα)×\frac{1}{cosα}}}{{(5cosα+3sinα)×\frac{1}{cosα}}}$=$\frac{4tanα-2}{5+3tanα}$=$\frac{4×3-2}{5+3×3}$=$\frac{5}{7}$.
(2)$2+sinθcosθ-{cos^2}θ=\frac{{2({{sin}^2}θ+{{cos}^2}θ)+sinθcosθ-{{cos}^2}θ}}{{{{sin}^2}θ+{{cos}^2}θ}}$
=$\frac{{2{{sin}^2}θ+sinθcosθ+{{cos}^2}θ}}{{{{sin}^2}θ+{{cos}^2}θ}}=\frac{{2{{tan}^2}θ+tanθ+1}}{{1+{{tan}^2}θ}}$
=$\frac{{2×{{(-\frac{3}{4})}^2}+(-\frac{3}{4})+1}}{{1+{{(-\frac{3}{4})}^2}}}=\frac{{\frac{9}{8}-\frac{3}{4}+1}}{{1+\frac{9}{16}}}=\frac{22}{25}$.
点评 本题主要考查同角三角函数的基本关系的应用,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 4 | B. | 2 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | k≥4或k≤-4 | B. | $k≥\sqrt{2}$或$k≤-2\sqrt{2}$ | C. | $k=±2\sqrt{3}$ | D. | $k=±2\sqrt{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com