【题目】如图,在四棱锥中,底面,是边长为的正方形.且,点是的中点.
(1)求证:;
(2)求平面与平面所成锐二面角的大小.
【答案】(1)见解析;(2).
【解析】
(1)证明出平面,由直线与平面垂直的定义可得出;
(2)解法一:以、、为、、轴建立空间直角坐标系,由题意得出平面与平面的一个法向量分别为、,然后利用空间向量法计算出平面与平面所成的锐二面角;
解法二:过引直线,使得,可知为平面与平面所成二面角的棱,并证明出,,由二面角的定义得出为平面与平面所成的锐二面角,然后在计算出该角即可.
(1)由题意,底面是正方形,.
底面,平面,.
,平面.
平面,.
又,点是的中点,,
,平面.
平面,;
(2)法—:由题知、、两两垂直,以、、为、、轴建立空间直角坐标系.
则,,则,,
平面,则是平面的一个法向量,,
由(1)知平面,是平面的一个法向量,且,
∴,
因此,平面与平面所成锐二面角的大小等于;
法二:过引直线,使得,则,
平面,平面,就是平面与平面所成二面角的棱.
由条件知,,,已知,则平面.
由作法知,则平面,所以,,
就是平面与平面所成锐二面角的平面角.
在中,,平面与平面所成锐二面角的大小等于.
科目:高中数学 来源: 题型:
【题目】某市旅游局为了进一步开发旅游资源,需要了解游客的情况,以便制定相应的策略,在某月中随机抽取甲、乙两个景点各10天的游客数,画出茎叶图如下:若景点甲中的数据的中位数是126,景点乙中的数据的平均数是124.
(1)求,的值;
(2)若将图中景点甲中的数据作为该景点较长一段时期内的样本数据(视样本频率为概率).今从这段时期内任取4天,记其中游客数不低于125人的天数为,求概率;
(3)现从上图的共20天的数据中任取2天的数据(甲、乙两景点中各取1天),记其中游客数不低于115且不高于135人的天数为,求的分布列和期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,从参加环保知识竞赛的学生中抽出名,将其成绩(均为整数)整理后画出的频率分布直方图如下:观察图形,回答下列问题:
(1)这一组的频数、频率分别是多少?
(2)估计这次环保知识竞赛成绩的平均数、众数、中位数。(不要求写过程)
(3) 从成绩是80分以上(包括80分)的学生中选两人,求他们在同一分数段的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某IT从业者绘制了他在26岁~35岁(2009年~2018年)之间各年的月平均收入(单位:千元)的散点图:
(1)由散点图知,可用回归模型拟合与的关系,试根据附注提供的有关数据建立关于的回归方程
(2)若把月收入不低于2万元称为“高收入者”.
试利用(1)的结果,估计他36岁时能否称为“高收入者”?能否有95%的把握认为年龄与收入有关系?
附注:①.参考数据:,,,,,,,其中,取,
②.参考公式:回归方程中斜率和截距的最小二乘估计分别为:,
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
③..
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列三个命题:
①若,则或的逆命题;
②若,则的逆否命题;
③若、,是奇数,则、中一个是奇数,一个是偶数.
其中真命题的个数为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以表示值域为的函数组成的集合,表示具有如下性质的函数组成的集合:对于函数,存在一个正数,使得函数的值域包含于区间。例如,当,时,,。则下列命题中正确的是:( )
A.设函数的定义域为,则“”的充要条件是“,,”
B.函数的充要条件是有最大值和最小值
C.若函数,的定义域相同,且,,则
D.若函数有最大值,则
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆()的左、右焦点分别是,,点为的上顶点,点在上,,且.
(1)求的方程;
(2)已知过原点的直线与椭圆交于,两点,垂直于的直线过且与椭圆交于,两点,若,求.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com