【题目】已知两点、,动点满足,记的轨迹为曲线,直线()交曲线于、两点,点在第一象限,轴,垂足为,连结并延长交曲线于点.
(1)求曲线的方程,并说明曲线是什么曲线;
(2)若,求△的面积;
(3)证明:△为直角三角形.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,、分别为椭圆的左、右焦点.设不经过焦点的直线与椭圆交于两个不同的点、,焦点到直线的距离为.若直线、、的斜率依次成等差数列,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中, 经过原点的直线将分成左、右两部分,记左、右两部分的面积分别为 ,则取得最小值时,直线的斜率( )
A.等于1B.等于C.等于D.不存在
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,O为原点,两个点列 和 满足:① ;②
(1)求点和的坐标;
(2)求向量的坐标;
(3)对于正整数k,用表示无穷数列 中从第k+1项开始的各项之和,用表示无穷数列 中从第k项开始的各项之和,即, 若存在正整数k和p,使得,求k,p的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点P和非零实数,若两条不同的直线 均过点P,且斜率之积为,则称直线是一组“共轭线对”,如直 是一组“共轭线对”,其中O是坐标原点.
(1)已知是一组“共轭线对”,求的夹角的最小值;
(2)已知点A(0,1)、点和点C(1,0)分别是三条直线PQ,QR,RP上的点(A,B,C与P,Q,R均不重合),且直线PR,PQ是“ 共轭线对”,直线QP,QR是“共轭线对”,直线RP,RQ是“共轭线对”,求点P的坐标;
(3)已知点 ,直线是“共轭线对”,当的斜率变化时,求原点O到直线的距离之积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解儿子身高与其父亲身高的关系,随机调查了5对父子的身高,统计数据如下表所示.
编 号 | A | B | C | D | E |
父亲身高 | 174 | 176 | 176 | 176 | 178 |
儿子身高 | 175 | 175 | 176 | 177 | 177 |
(1)从这五对父子任意选取两对,用编号表示出所有可能取得的结果,并求随机事件 “两对父子中儿子的身高都不低于父亲的身高”发生的概率;
(2)由表中数据,利用“最小二乘法”求关于的回归直线的方程.
参考公式:,;回归直线:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市户居民的月平均用电量(单位:度),以,,,,,,分组的频率分布直方图如图.
(1)求直方图中的值;
(2)求月平均用电量的众数和中位数;
(3)在月平均用电量为,,,的四组用户中,用分层抽样的方法抽取户居民,则月平均用电量在的用户中应抽取多少户?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面直角坐标系xOy内,点,动点和Q关于原点O对称,,.
(1)以原点O和点A为顶点作等腰直角三角形ABO,使,求向量坐标;
(2)若且P、M、A三点共线,求的最小值;
(3)若,且,,求直线AQ的解析式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某人有4种颜色的灯泡(每种颜色的灯泡足够多),要在如图所示的6个点A、B、C、A1、、B1、C1上各装一个灯泡,要求同一条线段两端的灯泡不同色,则每种颜色的灯泡都至少用一个的安装方法共有 种(用数字作答).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com