精英家教网 > 高中数学 > 题目详情
19.设Z是整数集,实数x,y满足$\left\{\begin{array}{l}{x+y≤4}\\{x-y≤0}\\{y≤5x+4}\\{x,y∈Z}\end{array}\right.$,若使得z=ax+y取到最大值的点(x,y)有且仅有两个,则实数a的值是(  )
A.5B.一5C.1D.一1

分析 由约束条件作出可行域,得到可行域内的整点,把满足条件的整点坐标代入目标函数得答案.

解答 解:如图,可行域为三条直线x+y=4,x-y=0,y=5x+4围成的区域(含边界)内的整点,
依题意,最优解是(-1,-1),(0,4),
∴-a=5,即a=-5.
故选:B.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知α∈($\frac{π}{2}$,π),且sin(α+$\frac{π}{4}$)=-$\frac{\sqrt{2}}{3}$.
(1)求sinα的值;
(2)求cos($\frac{5π}{12}$-α)的值.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年安徽豪州蒙城县一中高二上月考一数学试卷(解析版) 题型:解答题

已知数列的前项和,且的最大值为8.

(1)确定常数,并求

(2)求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.对于函数f(x)=$\frac{x-1}{x+1}$,设f2(x)=f[f(x)],f3(x)=f[f2(x)],…,fn+1(x)=f[fn(x)](n∈N*,且n≥2),令集合M={x|f2015(x)=-x,x∈R},则集合M为(  )
A.空集B.实数集C.单元素集D.二元素集

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在等差数列{an}中,若3(a4+a6)+2(a7+a9+a11)=24,则此数列的前13项之和为(  )
A.13B.26C.52D.156

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C的中心在坐标原点,焦点在x轴上,离心率为$\frac{1}{2}$,它的一个顶点恰好是抛物线x=$\frac{1}{4}$y2的焦点.
(1)求椭圆C的标准方程;
(2)若AB为椭圆C的一条不垂直于x轴的弦,且过点(1,0).过A作关于x轴的对称点A’,证明直线A′B过x轴的定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数$f(x)=\frac{-3+4x}{5-2x}$的值域是(  )
A.(-∞,2)∪(2,+∞)B.(-∞,-2)∪(-2,+∞)C.$({-∞,\frac{5}{2}})∪({\frac{5}{2},+∞})$D.R

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设偶函数f(x)在[0,+∞)单调递增,则使得f(x)>f(2x-1)成立的x的取值范围是(  )
A.($\frac{1}{3}$,1)B.(-∞,$\frac{1}{3}$)∪(1,+∞)C.(-$\frac{1}{3}$,$\frac{1}{3}$)D.(-∞,-$\frac{1}{3}$)∪($\frac{1}{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=$\frac{x}{{x}^{2}+a}$(a>0)在[1,+∞)上的最大值为$\frac{\sqrt{3}}{3}$,则a的值为(  )
A.$\sqrt{3}$-1B.$\frac{3}{4}$C.$\frac{4}{3}$D.$\sqrt{3}$+1

查看答案和解析>>

同步练习册答案