精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥,侧面是边长为2的正三角形,且与底面垂直,底面的菱形, 为棱上的动点,且.

(1)求证:

(2)试确定的值,使得二面角的平面角余弦值为.

【答案】(1)见解析(2)

【解析】试题分析:(1)通过证明平面,得出,因为,所以;(2)建立空间直角坐标系,写出各点坐标,由 ,用表示出P点坐标,求出平面MAD的法向量,根据二面角的平面角余弦值为,求出的值。

试题解析:(1)取中点,连结,依题意可知均为正三角形,所以 ,又 平面 平面,所以平面,又平面,所以,因为,所以.

(2) 由(1)可知, ,又平面平面,平面平面 平面,所以平面.

为原点,建立空间直角坐标系如图所示,

,由,可得点的坐标为

所以

设平面的法向量为,则

解得,令,得,显然平面的一个法向量为.

依题意

(舍去)

时,二面角的平面角余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,能推断这个几何体可能是三棱台的是(
A.A1B1=2,AB=3,B1C1=3,BC=4
B.A1Bl=1,AB=2,BlCl=1.5,BC=3,A1C1=2,AC=3
C.AlBl=1,AB=2,B1Cl=1.5,BC=3,AlCl=2,AC=4
D.AB=A1B1 , BC=B1C1 , CA=C1A1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题共12分)

如图,边长为3的正方形所在平面与等腰直角三角形所在平面互相垂直, ,且 .

(Ⅰ)求证: 平面

(Ⅱ)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 是两两不等的实数,点 ,点 ,则直线 的倾斜角为(
A.30°
B.45°
C.60°
D.135°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若,求曲线在点处的切线方程;

(2)若处取得极小值,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在底面半径和高均为4的圆锥中,AB、CD是底面圆O的两条互相垂直的直径,E是母线PB的中点,若过直径CD与点E的平面与圆锥侧面的交线是以E为顶点的抛物线的一部分,则该抛物线的焦点到圆锥顶点P的距离为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场对甲、乙两种品牌的商品进行为期100天的营销活动,为调查者100天的日销售情况,随机抽取了10天的日销售量(单位:件)作为样本,样本数据的茎叶图如图,若日销量不低于50件,则称当日为“畅销日”.

(1)现从甲品牌日销量大于40且小于60的样本中任取两天,求这两天都是“畅销日”的概率;

(2)用抽取的样本估计这100天的销售情况,请完成这两种品牌100天销量的列联表,并判断是否有的把握认为品牌与“畅销日”天数有关.

附: (其中

0.050

0.010

0.001

3.841

6.635

10.828

畅销日天数

非畅销日天数

合计

甲品牌

乙品牌

合计

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点过点且与坐标轴不垂直的直线与椭圆交于两点当直线经过椭圆的一个顶点时其倾斜角恰好为

1求椭圆的方程

2为坐标原点线段上是否存在点使得?若存在,求出实数的取值范围;若不存在,说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】长春市的“名师云课”活动自开展以来获得广大家长和学子的高度赞誉,在我市推出的第二季名师云课中,数学学科共计推出36节云课,为了更好地将课程内容呈现给广大学子,现对某一时段云课的点击量进行统计:

点击量

节数

6

18

12

(Ⅰ)现从36节云课中采用分层抽样的方式选出6节,求选出的点击量超过3000的节数.

(Ⅱ)为了更好地搭建云课平台,现将云课进行剪辑,若点击量在区间内,则需要花费40分钟进行剪辑,若点击量在区间内,则需要花费20分钟进行剪辑,点击量超过3000,则不需要剪辑,现从(Ⅰ)中选出的6节课中任意取出2节课进行剪辑,求剪辑时间为40分钟的概率.

查看答案和解析>>

同步练习册答案