【题目】已知函数f(n)=n2sin ),且an=f(n)+f(n+1),则a1+a2+a3+…+a2016的值为
【答案】4023
【解析】解:∵f(n)=n2sin ),
∴f(1)=1,f(2)=0,f(3)=﹣32 , f(4)=0,…,
可得f(2k)=4k2sinkπ=0,k∈N* , f(2k﹣1)=(2k﹣1)2 =(2k﹣1)2(﹣1)k﹣1 .
又an=f(n)+f(n+1),
∴a2k﹣1=f(2k﹣1)+f(2k)=(2k﹣1)2(﹣1)k﹣1 , a2k=f(2k)+f(2k+1)=(2k+1)2(﹣1)k .
∴a2k﹣1+a2k=(2k﹣1)2(﹣1)k﹣1+(2k+1)2(﹣1)k=(﹣1)k8k.
则a1+a2+a3+…+a2016=8×[﹣1+2﹣3+4+…﹣1007+1008]=4032.﹣.
所以答案是:4032.
【考点精析】本题主要考查了数列的前n项和的相关知识点,需要掌握数列{an}的前n项和sn与通项an的关系才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:
(Ⅰ)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率;
(Ⅱ)求频率分布直方图中的的值;
(Ⅲ)从阅读时间在的学生中任选2人,求恰好有1人阅读时间在,另1 人阅读时间在 的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)在x= 取得最大值2,方程f(x)=0的两个根为x1、x2 , 且|x1﹣x2|的最小值为π.
(1)求f(x);
(2)将函数y=f(x)图象上各点的横坐标压缩到原来的 ,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)的单调增区间和在(﹣ , )上的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出20个数,1,2,4,7,11,…,其规律是:第1个数是1,第2个数比第1个数大1,第3个数比第2个数大2,第4个数比第3个数大3,…,以此类推,如图所示的程序框图的功能是计算这20个数的和.
(1)请在程序框图中填写两个(_______)内缺少的内容;
(2)请补充完整该程序框图对应的计算机程序(用WHILE语句编写).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= sin2x﹣ cos2x
(1)求f(x)的最小正周期和单调增区间;
(2)若将f(x)的图象上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数g(x)的图象,当x∈[ ]时,求函数g(x)的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2015年年岁史诗大剧《芈月传》风靡大江南北,影响力不亚于以前的《甄嬛传》,某记者调查了大量《芈月传》的观众,发现年龄段与爱看的比例存在较好的线性相关关系,年龄在, , , , 的爱看比例分别为, , , , ,现用这5个年龄段的中间值代表年龄段,如12代表,17代表,根据前四个数据求得关于爱看比例的线性回归方程为,由此可推测的值为( )
A. 33 B. 35 C. 37 D. 39
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】动点在圆: 上运动,定点,线段的垂直平分线与直线的交点为.
(Ⅰ)求的轨迹的方程;
(Ⅱ)过点的直线, 分别交轨迹于, 两点和, 两点,且.证明:过和中点的直线过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一支车队有辆车,某天依次出发执行运输任务。第一辆车于下午时出发,第二辆车于下午时分出发,第三辆车于下午时分出发,以此类推。假设所有的司机都连续开车,并都在下午时停下来休息.
到下午时,最后一辆车行驶了多长时间?
如果每辆车的行驶速度都是,这个车队当天一共行驶了多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com